矩阵 II : 线性组的线性相关性

学习机器学习, 基础的线性代数知识是必备的基础功, 对于线性代数的探索, 向量组也是线性代数的重要基础. 今天我们就开始学习一下线性代数中重要的向量组知识. 这是本人关于线性组的线性相关性的学习分享. 章节目录相关性基本概念 1.1 相性相关和线性无关 1.2 相性相关性的判别定理向量组的秩与极大无关组 2.1 秩与极大无关组 2.2 等价向量组向量空间 3.1
摘要由CSDN通过智能技术生成

    学习机器学习, 基础的线性代数知识是必备的基础功, 对于线性代数的探索, 向量组也是线性代数的重要基础. 今天我们就开始学习一下线性代数中重要的向量组知识. 这是本人关于线性组的线性相关性的学习分享.

章节目录

  1. 相关性基本概念
    1.1 相性相关和线性无关
    1.2 相性相关性的判别定理
  2. 向量组的秩与极大无关组
    2.1 秩与极大无关组
    2.2 等价向量组
  3. 向量空间
    3.1 向量空间的概念
    3.2 正交基
    3.3 基变换与坐标变换
    3.4 线性方程组解的结构

本文是一篇包含大量枯燥数学知识的文章, 作者能力有限, 如果您在阅读过程中发现任何错误, 还请您务必联系本人,指出错误, 避免后来读者再学习错误的知识.谢谢!

本文也同时发布于我的个人博客, 欢饮访问.(文中超链接均指向本人的博客网站, 不想离开 CSDN 页面的读者慎点)

这里偷个懒, 就不介绍向量的基本定义了. 我们直入主题.不是很清楚向量基本概念的读者可以先熟悉一下相关知识.

相关性基本概念

相性相关和线性无关

α1,α1,...,αm α 1 , α 1 , . . . , α m 均为 n 维向量, 如果存在一组数 k1,k2,...,km k 1 , k 2 , . . . , k m 使

α=k1α1+k2α2+...+kmαm α = k 1 α 1 + k 2 α 2 + . . . + k m α m

则称向量 α α α1,α1,...,αm α 1 , α 1 , . . . , α m 线性组合, 或者称向量 α α 可由 α1,α1,...,αm α 1 , α 1 , . . . , α m 线性表示

判断向量 α α 是否可由 α1,α1,...,αm α 1 , α 1 , . . . , α m 线性表示的问题, 可以转化为判断非齐次线性方程组是否有解的问题. 其中 α α 作为线性方程组的 b, α1,α1,...,αm α 1 , α 1 , . . . , α m 作为线性方程组的对应系数, k1,k2,...,km k 1 , k 2 , . . . , k m 作为未知数.

α1,α1,...,αm α 1 , α 1 , . . . , α m 均为 n 维向量, 如果存在一组不全为零的数 k1,k2,...,km k 1 , k 2 , . . . , k m 使

k1α1+k2α2+...+kmαm=0 k 1 α 1 + k 2 α 2 + . . . + k m α m = 0

则称向量组 α1,α1,...,αm α 1 , α 1 , . . . , α m 线性相关, 否则,称向量组 α1,α1,...,αm α 1 , α 1 , . . . , α m 线性无关

判断向量组是否线性相关的问题可以转化为判断齐次线性方程组是否有非零解的问题.


注意: 区分一下线性表示和相性相关:
线性表示是判断一组向量是否可以通过适当的线性组合表示另外一个向量.
线性相关是判断一组向量是否可以通过适当的线性组合表示成一个零向量.
注意线性相关定义中加粗的”不全为零”关键字. 线性相关要求组合时使用的系数不能全部为零, 而线性表示并没有这个要求.

相性相关性的判别定理

向量组 α1,α1,...,αm(m2) α 1 , α 1 , . . . , α m ( m ≥ 2 ) 线性相关的充分必要条件是至少其中一个向量可由其余 m-1 个向量线性表示.
证明:

必要性:

α1,α1,...,αm α 1 , α 1 , . . . , α m 线性相关, 由定义知, 存在不全为零的一组数 k1,k2,...,km k 1 , k 2 , . . . , k m , 使

k1α1+k2α2+...+kmαm=0 k 1 α 1 + k 2 α 2 + . . . + k m α m = 0

不妨设 k10 k 1 ≠ 0 , 则有:

α1=(k2k1α2)+(k3k1α3)+...+(kmk1αm) α 1 = ( − k 2 k 1 α 2 ) + ( − k 3 k 1 α 3 ) + . . . + ( − k m k 1 α m )

α1 α 1 可由 α2,α3,...,αm α 2 , α 3 , . . . , α m 线性表示.

充分性:

不妨设 αm α m 可由 α1,α1,...,αm1 α 1 , α 1 , . . . , α m − 1 线性表示, 由定义知, 存在一组数 k1,k2,...,km1 k 1 , k 2 , . . . , k m − 1 , 使

αm=k1α1+k2α2+...+km1αm1 α m = k 1 α 1 + k 2 α 2 + . . . + k m − 1 α m − 1

k1α1+k2α2+...+km1αm1+(1)kmαm=0 k 1 α 1 + k 2 α 2 + . . . + k m − 1 α m − 1 + ( − 1 ) k m α m = 0

因为 m 个数 k1,k2,...,km1,1 k 1 , k 2 , . . . , k m − 1 , − 1 不全为零, 所以 α1,α1,...,αm α 1 , α 1 , . . . , α m 线性相关.

推论: 两个向量线性相关的充分必要条件是它们的对应分量成比例.

需要指出, 向量组 α1,α1,...,αm α 1 , α 1 , . . . , α m 线性相关时, 一般不能肯定是哪个向量可由其他的向量线性表示, 更不能理解为其中的任一个向量都可以由其他向量线性表示


设向量组 α1,α1,...,αm α 1 , α 1 , . . . , α m 线性无关, 而向量组 α1,α1,...,αm,β α 1 , α 1 , . . . , α m , β 线性相关, 则向量 β β 可由 α1,α1,...,αm α 1 , α 1 , . . . , α m 线性表示, 且表示唯一
证明:

α1,α1,...,αm α 1 , α 1 , . . . , α m 线性相关可知 存在不全为零的一组数 k1,k2,...,km,km+1 k 1 , k 2 , . . . , k m , k m + 1 , 使

k1α1+k2α2+...+kmαm+km+1β=0 k 1 α 1 + k 2 α 2 + . . . + k m α m + k m + 1 β = 0

假设 km+1=0 k m + 1 = 0 , 上式变为

k1α1+k2α2+...+kmαm=0 k 1 α 1 + k 2 α 2 + . . . + k m α m = 0

此时 k1,k2,...,km k 1 , k 2 , . . . , k m 全部为零, 得到 α1,α1,...,αm α 1 , α 1 , . . . , α m 线性相关, 这与题设矛盾, 因此 km+10 k m + 1 ≠ 0 , 于是有:

β=(k1km+1α1)+(k2km+1α2)+...+(kmkm+1αm) β = ( − k 1 k m + 1 α 1 ) + ( − k 2 k m + 1 α 2 ) + . . . + ( − k m k m + 1 α m )

再证唯一性. 设有两个表达式

β=k1α1+k2α2+...+kmαm,β=l1α1+l2α2+...+lmαm β = k 1 α 1 + k 2 α 2 + . . . + k m α m , β = l 1 α 1 + l 2 α 2 + . . . + l m α m

两式相减, 可得:

(k1l1)α1+(k2l2)α2+...+(kmlm)αm=0 ( k 1 − l 1 ) α 1 + ( k 2 − l 2 ) α 2 + . . . + ( k m − l m ) α m = 0

因为 α1,α1,...,αm α 1 , α 1 , . . . , α m 线性无关, 所以

k1l1=0,...,kmlm=0 k 1 − l 1 = 0 , . . . , k m − l m = 0

k1=l1,.

  • 1
    点赞
  • 21
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值