多维随机变量及其分布

二维随机变量

一般,设 E E 为一个随机试验,它的样本空间是S={e},设 X=X(e) X = X ( e ) Y=Y(e) Y = Y ( e ) 是定义在 S S 上的随机变量,由他们构成的一个向量(X,Y)叫做二维随机向量,或者二维随机变量
分布函数
(X,Y) ( X , Y ) 是二维随机变量,对于任意实数 x,y x , y 二元函数

F(x,y)=P{(Xx)(Yy)}=P{Xx,Yy} F ( x , y ) = P { ( X ≤ x ) ∩ ( Y ≤ y ) } = 记 成 ⁡ P { X ≤ x , Y ≤ y }

称为 二维随机变量 (X,Y) ( X , Y ) 的分布函数,或称为 随机变量 X X Y的联合分布函数
这里写图片描述
分布函数 F(x,y) F ( x , y ) 的性质
1 1 ∘
F(x,y) F ( x , y ) 是变量 x x y的不减函数,即对任意固定的 y y ,当x2>x1时, F(x2,y)F(x1,y) F ( x 2 , y ) ≥ F ( x 1 , y ) ;对于任意固定的 x x ,当y2y1 F(x,y2)F(x,y1) F ( x , y 2 ) ≥ F ( x , y 1 )
2 2 ∘
0F(x,y)1 0 ≤ F ( x , y ) ≤ 1


对于任意固定的 y y ,F(,y)=0
对于任意固定的 x x ,F(x,)=0
F(,+)=0,F(+,+)=1 F ( − ∞ , + ∞ ) = 0 , F ( + ∞ , + ∞ ) = 1


3 3 ∘
F(x+0,y)=F(x,y),F(x,y+0)=F(x,y) F ( x + 0 , y ) = F ( x , y ) , F ( x , y + 0 ) = F ( x , y )
,即对于 F(x,y) F ( x , y ) 关于 x x 右连续关于y也右连续
4 4 ∘
对于任意 (x1,y1),(x2,y2),x1<x2,y1<y2 ( x 1 , y 1 ) , ( x 2 , y 2 ) , x 1 < x 2 , y 1 < y 2 下面不等式成立:
F(x2,y2)F(x2,y1)+F(x1,y1)F(x1,y2)0 F ( x 2 , y 2 ) − F ( x 2 , y 1 ) + F ( x 1 , y 1 ) − F ( x 1 , y 2 ) ≥ 0

离散型随机变量

如果二维随机变量 (X,Y) ( X , Y ) 所有可能取值为 (xi,yi),i,j=1,2, ( x i , y i ) , i , j = 1 , 2 , ⋯ ,记 P{X=xi,Y=yj}=pij,i,j=1,2, P { X = x i , Y = y j } = p i j , i , j = 1 , 2 , ⋯ ,则由概率的定义有

pij0,i=1j=1pij=1 p i j ≥ 0 , ∑ i = 1 ∞ ∑ j = 1 ∞ p i j = 1

我们称 P{X=xi,Y=yj}=pij,i,j=1,2, P { X = x i , Y = y j } = p i j , i , j = 1 , 2 , ⋯ 为二维离散型随机变量 (X,Y) ( X , Y ) 分布律,或称随机变量 X X Y联合分布律
我们可以使用表格来表示 X X Y的联合分布律
与一维随机变量类似,对二维随机变量 (X,Y) ( X , Y ) 的分布函数 F(x,y) F ( x , y ) ,如果存在 非负可积函数 f(x,y) f ( x , y ) 使得对于任意 x,y x , y
F(x,y)=yxf(u,v)dudv F ( x , y ) = ∫ − ∞ y ∫ − ∞ x f ( u , v ) d u d v

则称 (X,Y) ( X , Y ) 连续型的二维随机变量,函数 f(x,y) f ( x , y ) 称为二维随机变量 (X,Y) ( X , Y ) 概率密度,或称为联合随机变量 X X Y联合概率密度
按照定义,概率密度 f(x,y) f ( x , y ) 具有以下性质:
1 1 ∘ : f(x,y)0 f ( x , y ) ≥ 0 .
2 2 ∘ : ++f(x,y)dxdy=F(+,+)=1 ∫ − ∞ + ∞ ∫ − ∞ + ∞ f ( x , y ) d x d y = F ( + ∞ , + ∞ ) = 1
3 3 ∘ :
假设 G G xOy平面上的区域,点 (X,Y) ( X , Y ) 落在 G G 内的概率为
P{(X,Y)G}=Gf(x,y)dxdy

4 4 ∘ :
f(x,y) f ( x , y ) 在点 (x,y) ( x , y ) 连续,则有
2F(x,y)xy=f(x,y) ∂ 2 F ( x , y ) ∂ x ∂ y = f ( x , y )

边缘分布

二维随机变量 (X,Y) ( X , Y ) 作为一个整体,具有分布函数 F(x,y) F ( x , y ) 。而 X X Y都是随机变量,各自也有相应分布函数,将他们分布记为 FX(x)FY(y) F X ( x ) , F Y ( y ) 依次称为二维随机变量 (X,Y) ( X , Y ) 关于 X X 和关于Y的边缘分布函数。
边缘分布函数可以由 (X,Y) ( X , Y ) 的分布函数 F(x,y) F ( x , y ) 所确定,事实上:

FX(x)=P{Xx}=P{Xx,Y<}=F(x,) F X ( x ) = P { X ≤ x } = P { X ≤ x , Y < ∞ } = F ( x , ∞ )

即:
FX(x)=F(x,)FY(y)=F(,y) F X ( x ) = F ( x , ∞ ) F Y ( y ) = F ( ∞ , y )

离散随机变量
FX(x)=F(x,+)=xixj=1pij F X ( x ) = F ( x , + ∞ ) = ∑ x i ≤ x ∑ j = 1 ∞ p i j

X X 的分布律为:
P{X=xi}=j=1pij,i=1,2,

Y Y 的分布律为:
P{Y=yi}=i=1pij,j=1,2,

记:

pi=j=1pij=P{X=xi},i=1,2, p i ⋅ = ∑ j = 1 ∞ p i j = P { X = x i } , i = 1 , 2 , ⋯

pj=i=1pij=P{Y=yj},j=1,2, p ⋅ j = ∑ i = 1 ∞ p i j = P { Y = y j } , j = 1 , 2 , ⋯

分别称 pi(i=1,2,) p i ⋅ ( i = 1 , 2 , ⋯ ) pj(j=1,2,) p ⋅ j ( j = 1 , 2 , ⋯ ) (X,Y) ( X , Y ) 关于 X X Y边缘分布律.

连续型随机变量

(X,Y) ( X , Y ) ,设他的概率密度为 f(x,y) f ( x , y ) ,由于

FX(x)=F(x,)=x[f(x,y)dy]dx F X ( x ) = F ( x , ∞ ) = ∫ − ∞ x [ ∫ − ∞ ∞ f ( x , y ) d y ] d x

X X 是一个连续型随机变量,且其概率密度为:
fX(x)=f(x,y)dy

Y Y 是一个连续型随机变量,且其概率密度为:

fY(y)=f(x,y)dx

分布称 fX(x) f X ( x ) fY(x) f Y ( x ) (X,Y) ( X , Y ) 关于 X X 和关于Y边缘概率密度。

二维正态分布

设二维随机变量 (X,Y) ( X , Y ) 的概率密度为

f(x,y)=12πσ1σ21ρ2exp{12(1ρ2)[(xμ1)2σ212ρ(xμ1)(xμ2)σ1σ2+(yμ2)2σ22]} f ( x , y ) = 1 2 π σ 1 σ 2 1 − ρ 2 exp ⁡ { − 1 2 ( 1 − ρ 2 ) [ ( x − μ 1 ) 2 σ 1 2 − 2 ρ ( x − μ 1 ) ( x − μ 2 ) σ 1 σ 2 + ( y − μ 2 ) 2 σ 2 2 ] }

其中 μ1,μ2,σ1,σ2,ρ μ 1 , μ 2 , σ 1 , σ 2 , ρ 都是常数,且 σ1>0,σ2>0,1<ρ<1 σ 1 > 0 , σ 2 > 0 , − 1 < ρ < 1 。我们称 (X,Y) ( X , Y ) 为服从 μ1,μ2,σ1,σ2,ρ μ 1 , μ 2 , σ 1 , σ 2 , ρ 的二维正态分布。
记为:
(X,Y)N(μ1,μ2,σ21,σ22,ρ) ( X , Y ) ∼ N ( μ 1 , μ 2 , σ 1 2 , σ 2 2 , ρ )

另一种表示方法:
X=(x1x2),μ=(μ1μ2) X = ( x 1 x 2 ) , μ = ( μ 1 μ 2 )

(X1,X2) ( X 1 , X 2 ) 的协方差矩阵为:
C=(c11c21c12c22)=(σ21ρσ1σ2ρσ1σ2σ22) C = ( c 11 c 12 c 21 c 22 ) = ( σ 1 2 ρ σ 1 σ 2 ρ σ 1 σ 2 σ 2 2 )

它的行列式为: detC=σ21σ22(1ρ2) det C = σ 1 2 σ 2 2 ( 1 − ρ 2 )
C C 的逆矩阵为:
C1=1detC(σ22ρσ1σ2ρσ1σ2σ12)

(Xμ)TC1(Xμ)=1detC(x1μ1x2μ2)(σ22ρσ1σ2ρσ1σ2σ21)(x1μ1x2μ2)=11ρ2[(xμ1)2σ212ρ(xμ1)(xμ2)σ1σ2+(yμ2)2σ22] ( X − μ ) T C − 1 ( X − μ ) = 1 det C ( x 1 − μ 1 x 2 − μ 2 ) ( σ 2 2 − ρ σ 1 σ 2 − ρ σ 1 σ 2 σ 1 2 ) ( x 1 − μ 1 x 2 − μ 2 ) = 1 1 − ρ 2 [ ( x − μ 1 ) 2 σ 1 2 − 2 ρ ( x − μ 1 ) ( x − μ 2 ) σ 1 σ 2 + ( y − μ 2 ) 2 σ 2 2 ]

于是 (X1,X2) ( X 1 , X 2 ) 的概率密度可以写成:
f(x1,x2)=1(2π)2/2(detC)1/2exp{12(Xμ)TC1(Xμ)} f ( x 1 , x 2 ) = 1 ( 2 π ) 2 / 2 ( det C ) 1 / 2 exp ⁡ { − 1 2 ( X − μ ) T C − 1 ( X − μ ) }

条件分布

(X,Y) ( X , Y ) 是二维离散型随机变量,其分布律为:

P{X=x,Y=yi}=pij,i,j=1,2, P { X = x , Y = y i } = p i j , i , j = 1 , 2 , ⋯

(X,Y) ( X , Y ) 关于 X X 和关于Y的边缘分布律分别为:


P{X=xi}=pi=i=1pij,i=1,2,P{Y=yi}=pj=j=1pij,j=1,2, P { X = x i } = p i ⋅ = ∑ i = 1 ∞ p i j , i = 1 , 2 , ⋯ P { Y = y i } = p ⋅ j = ∑ j = 1 ∞ p i j , j = 1 , 2 , ⋯


pj>0 p ⋅ j > 0 ,考虑在事件 {Y=yj} { Y = y j } 已经发生的条件下事件 {X=xi} { X = x i } 发生的概率,也就是求事件

{X=xiY=yj},j=1,2, { X = x i ∣ Y = y j } , j = 1 , 2 , ⋯
的概率,由条件概率公式,可得
P{X=xiY=yj}=P{X=xi,Y=yj}P{Y=yj}=pijpj,i=1,2, P { X = x i ∣ Y = y j } = P { X = x i , Y = y j } P { Y = y j } = p i j p ⋅ j , i = 1 , 2 , ⋯

上面条件概率具有分布律的性质

1P{X=xiY=yj}0;2i=1P{X=xiY=yj}=i=1pijpj=1pji=1pij=pjpj=1 1 ∘ P { X = x i ∣ Y = y j } ≥ 0 ; 2 ∘ ∑ i = 1 ∞ P { X = x i ∣ Y = y j } = ∑ i = 1 ∞ p i j p ⋅ j = 1 p ⋅ j ∑ i = 1 ∞ p i j = p ⋅ j p ⋅ j = 1

定义:
(X,Y) ( X , Y ) 是二维离散型随机变量,
对于固定的 j j ,若P{Y=yj}>0则称:

P{X=xiY=yj}=P{X=xi,Y=yj}P{Y=yj}=pijpj,i=1,2, P { X = x i ∣ Y = y j } = P { X = x i , Y = y j } P { Y = y j } = p i j p ⋅ j , i = 1 , 2 , ⋯

为在 Y=yj Y = y j 条件下随机变量 X X 条件分布律


同样对于固定的i,若 P{X=xi}>0 P { X = x i } > 0 ,则称

P{Y=yjX=xi}=P{X=xi,Y=yj}P{X=xi}=pijpi,j=1,2, P { Y = y j ∣ X = x i } = P { X = x i , Y = y j } P { X = x i } = p i j p i ⋅ , j = 1 , 2 , ⋯
为在 X=xj X = x j 条件下随机变量 Y Y 条件分布律

定义:
设二维随机变量(X,Y)的概率密度为 f(x,y) f ( x , y ) (X,Y) ( X , Y ) 关于 Y Y 边缘概率密度fY(y)。若对于固定的 y y ,fY(y)>0,则称 f(x,y)fY(y) f ( x , y ) f Y ( y ) 为在 Y=y Y = y 的条件下 X X 条件概率密度,记为:

fXY(xy)=f(x,y)fY(y)

xfXY(xy)dx=xf(x,y)fY(y)dx ∫ − ∞ x f X ∣ Y ( x ∣ y ) d x = ∫ − ∞ x f ( x , y ) f Y ( y ) d x 为在 Y=y Y = y 的条件下 X X 的条件分布函数。记:
P{XxY=y}或者 FXY(xy) F X ∣ Y ( x ∣ y ) ,即:
FXY(xy)=P{XxY=y}=xf(x,y)fY(y)dx F X ∣ Y ( x ∣ y ) = P { X ≤ x ∣ Y = y } = ∫ − ∞ x f ( x , y ) f Y ( y ) d x

且满足条件:

fXY(xy)=f(x,y)fY(y)fXY(xy)dx=f(x,y)fY(y)dx=1fY(y)f(x,y)dx=1 f X ∣ Y ( x ∣ y ) = f ( x , y ) f Y ( y ) ∫ − ∞ ∞ f X ∣ Y ( x ∣ y ) d x = ∫ − ∞ ∞ f ( x , y ) f Y ( y ) d x = 1 f Y ( y ) ∫ − ∞ ∞ f ( x , y ) d x = 1

相互独立的随机变量

定义:
F(x,y) F ( x , y ) 以及 FX(x),FY(y) F X ( x ) , F Y ( y ) 分别是二维随机变量 (X,Y) ( X , Y ) 的分布函数以及边缘分布函数,若对于所有 x,y x , y 有:

P{Xx,Yy}=P{Xx}P{Yy} P { X ≤ x , Y ≤ y } = P { X ≤ x } P { Y ≤ y }

即:
F(x,y)=FX(x)FY(y) F ( x , y ) = F X ( x ) F Y ( y )

(X,Y) ( X , Y ) 是连续型随机变量, f(x,y),fX(x),fY(y) f ( x , y ) , f X ( x ) , f Y ( y ) 分别为 (X,Y) ( X , Y ) 的概率密度和边缘概率密度,则 X X Y相互独立的条件为
f(x,y)=fX(x)fY(y) f ( x , y ) = f X ( x ) f Y ( y )
在平面上几乎处处成立(除去面积为零的集合外处处成立。)

则称随机变量 X X Y相互独立的.

两个随机变量的函数分布(连续)

Z=X+Y Z = X + Y

(X,Y) ( X , Y ) 是二维连续型随机变量,它具有概率密度 f(x,y) f ( x , y ) ,则 Z=X+Y Z = X + Y 仍为连续型随机变量,其概率密度为:

fX+Y(Z)=+f(zy,y)dy f X + Y ( Z ) = ∫ − ∞ + ∞ f ( z − y , y ) d y


fX+Y(Z)=+f(x,zx)dx f X + Y ( Z ) = ∫ − ∞ + ∞ f ( x , z − x ) d x

X X Y相互独立,设 (X,Y) ( X , Y ) 的关于 X X Y的边缘概率密度分别为 fX(x) f X ( x ) fY(y) f Y ( y )
则上式可以写为:
fX+Y(Z)=+fX(zy)fY(y)dy f X + Y ( Z ) = ∫ − ∞ + ∞ f X ( z − y ) f Y ( y ) d y


fX+Y(Z)=+fX(x)fY(zx)dx f X + Y ( Z ) = ∫ − ∞ + ∞ f X ( x ) f Y ( z − x ) d x

这两个公式被称为 fX f X fY f Y 卷积公式,记为 fXfY f X ∗ f Y 即:
fXfY=+fX(zy)fY(y)dy=+fX(x)fY(zx)dx f X ∗ f Y = ∫ − ∞ + ∞ f X ( z − y ) f Y ( y ) d y = ∫ − ∞ + ∞ f X ( x ) f Y ( z − x ) d x

Z=YX,Z=XY Z = Y X , Z = X Y

这里写图片描述

M=max{X,Y},M=min{X,Y} M = max { X , Y } , M = min { X , Y }

这里写图片描述

随机变量的相互独立性

(1) ( 1 ) 设二维随机变量 (X,Y) ( X , Y ) 的联合概率分布函数为 F(x,y) F ( x , y ) ,边缘概率分布函数分别为 FX(x),FY(y) F X ( x ) , F Y ( y ) ,如果对于任意实数 x,y x , y 都有:

F(x,y)=FX(x)FY(y)(xR),yR) F ( x , y ) = F X ( x ) ⋅ F Y ( y ) ( x ∈ R ) , y ∈ R )

即事件 {Xx} { X ≤ x } {Yy} { Y ≤ y } 相互独立
则称 X X Y相互独立,否则称 X X Y不相互独立
(2) ( 2 ) 如果 n n 维随机变量(X1,X2,,Xn)的联合分布函数等于边缘分布函数的乘积,即
F(x1,x2,,xn)=F1(x2)Fn(xn) F ( x 1 , x 2 , ⋯ , x n ) = F 1 ( x 2 ) ⋯ F n ( x n )

其中 Fi(x) F i ( x ) Xi X i 的边缘分布函数, xi x i 为任意实数,则称 X1,X2,,Xn X 1 , X 2 , ⋯ , X n 相互独立

添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值