样本及抽样分布

随机样本

在数理统计中,我们往往研究有关对象的某一项数量指标(例如研究某种型号灯泡的寿命这一数量指标)。为此,考虑与这一数量指标相联系的随机试验,对这一数量指标进行试验或观察。
我们将试验的全部可能的观察值称为总体
这些值都不一定不相同,数目上也不一定是有限的,每一个可能的观察值称为个体
总体中包含的个体的个数称为总体的容量
容量为有限的称为有限总体
容量为无限的称为无限总体

定义:
X X 是具有分布函数F的随机变量,若 X1,X2,,Xn X 1 , X 2 , ⋯ , X n 是具有同一个分布函数 F F 的,相互独立的随机变量,则称X1,X2,,Xn为分布函数 F F (或者总体F、或总体 X X )的到的容量为n简单随机样本,简称样本,他们的观察值 x1,x2,,xn x 1 , x 2 , ⋯ , x n 称为样本值,又称 X X n个独立变量的观察值

抽样分布

定义:
X1,X2,,Xn X 1 , X 2 , ⋯ , X n 是来自总体 X X 的一个样本,g(X1,X2,,Xn)的函数,若 g g 中不含未知参数,
g(X1,X2,,Xn)是一统计量
因为 X1,X2,,Xn X 1 , X 2 , ⋯ , X n 都是随机变量,而统计量 g(X1,X2,,Xn) g ( X 1 , X 2 , ⋯ , X n ) 是随机变量的函数,因此统计量是一个随机变量。设 x1,x2,,xn x 1 , x 2 , ⋯ , x n 是相应于样本 X1,X2,,Xn X 1 , X 2 , ⋯ , X n 的样本值,
g(x1,x2,,xn) g ( x 1 , x 2 , ⋯ , x n ) g(X1,X2,,Xn) g ( X 1 , X 2 , ⋯ , X n ) 观察值


样本平均值:

统计量

X¯¯¯¯=1ni=1nXi X ¯ = 1 n ∑ i = 1 n X i

观察值

x¯¯¯=1ni=1nxi x ¯ = 1 n ∑ i = 1 n x i


样本方差:

统计量

S2=1n1i=1n(XiX¯¯¯¯)2=1n1(i=1nX2inX¯¯¯¯2) S 2 = 1 n − 1 ∑ i = 1 n ( X i − X ¯ ) 2 = 1 n − 1 ( ∑ i = 1 n X i 2 − n X ¯ 2 )

观察值

s2=1n1i=1n(xix¯¯¯)2=1n1(i=1nx2inx¯¯¯2) s 2 = 1 n − 1 ∑ i = 1 n ( x i − x ¯ ) 2 = 1 n − 1 ( ∑ i = 1 n x i 2 − n x ¯ 2 )


样本标准差:

统计量

S=S2=1n1(i=1nX2inX¯¯¯¯2) S = S 2 = 1 n − 1 ( ∑ i = 1 n X i 2 − n X ¯ 2 )

观察值

s=s2=1n1(i=1nx2inx¯¯¯2) s = s 2 = 1 n − 1 ( ∑ i = 1 n x i 2 − n x ¯ 2 )


样本 k k 阶(原点)矩:

统计量

Ak=1ni=1nXik,k=1,2,;

观察值

ak=1ni=1nxki,k=1,2,; a k = 1 n ∑ i = 1 n x i k , k = 1 , 2 , ⋯ ;


样本 k k 阶中心矩:

统计量

Bk=1ni=1n(XiX¯)k,k=2,3,;

观察值

bk=1ni=1n(xix¯¯¯)k,k=2,3,; b k = 1 n ∑ i = 1 n ( x i − x ¯ ) k , k = 2 , 3 , ⋯ ;


评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值