随机样本
在数理统计中,我们往往研究有关对象的某一项数量指标(例如研究某种型号灯泡的寿命这一数量指标)。为此,考虑与这一数量指标相联系的随机试验,对这一数量指标进行试验或观察。
我们将试验的全部可能的观察值称为总体。
这些值都不一定不相同,数目上也不一定是有限的,每一个可能的观察值称为个体。
总体中包含的个体的个数称为总体的容量,
容量为有限的称为有限总体,
容量为无限的称为无限总体。
定义:
设
X
X
是具有分布函数的随机变量,若
X1,X2,⋯,Xn
X
1
,
X
2
,
⋯
,
X
n
是具有同一个分布函数
F
F
的,相互独立的随机变量,则称为分布函数
F
F
(或者总体、或总体
X
X
)的到的容量为的简单随机样本,简称样本,他们的观察值
x1,x2,⋯,xn
x
1
,
x
2
,
⋯
,
x
n
称为样本值,又称
X
X
为个独立变量的观察值。
抽样分布
定义:
设
X1,X2,⋯,Xn
X
1
,
X
2
,
⋯
,
X
n
是来自总体
X
X
的一个样本,的函数,若
g
g
中不含未知参数,
则称是一统计量
因为
X1,X2,⋯,Xn
X
1
,
X
2
,
⋯
,
X
n
都是随机变量,而统计量
g(X1,X2,⋯,Xn)
g
(
X
1
,
X
2
,
⋯
,
X
n
)
是随机变量的函数,因此统计量是一个随机变量。设
x1,x2,⋯,xn
x
1
,
x
2
,
⋯
,
x
n
是相应于样本
X1,X2,⋯,Xn
X
1
,
X
2
,
⋯
,
X
n
的样本值,
则称
g(x1,x2,⋯,xn)
g
(
x
1
,
x
2
,
⋯
,
x
n
)
是
g(X1,X2,⋯,Xn)
g
(
X
1
,
X
2
,
⋯
,
X
n
)
的 观察值
样本平均值:
样本方差:
样本标准差:
样本
k
k
阶(原点)矩:
样本
k
k
阶中心矩: