目标检测数据集

各类目标检测图像数据集下载地址

COCO

  • image
官网
https://cocodataset.org/#home 

2014 Train images [83K/13GB]:
http://images.cocodataset.org/zips/train2014.zip

2014 Val images [41K/6GB]:
http://images.cocodataset.org/zips/val2014.zip

2014 Test images [41K/6GB]:
http://images.cocodataset.org/zips/test2014.zip

2015 Test images [81K/12GB]:
http://images.cocodataset.org/zips/test2015.zip

2017 Train images [118K/18GB]:
http://images.cocodataset.org/zips/train2017.zip

2017 Val images [5K/1GB]:
http://images.cocodataset.org/zips/val2017.zip

2017 Test images [41K/6GB]:
http://images.cocodataset.org/zips/test2017.zip

2017 Unlabeled images [123K/19GB]:
http://images.cocodataset.org/zips/unlabeled2017.zip
  • Annotations
2014 Train/Val annotations [241MB]:
http://images.cocodataset.org/annotations/annotations_trainval2014.zip

2014 Testing Image info [1MB]:
http://images.cocodataset.org/annotations/image_info_test2014.zip

2015 Testing Image info [2MB]:
http://images.cocodataset.org/annotations/image_info_test2015.zip

2017 Train/Val annotations [241MB]:
http://images.cocodataset.org/annotations/annotations_trainval2017.zip

2017 Stuff Train/Val annotations [1.1GB]:
http://images.cocodataset.org/annotations/stuff_annotations_trainval2017.zip

2017 Panoptic Train/Val annotations [821MB]:
http://images.cocodataset.org/annotations/panoptic_annotations_trainval2017.zip

2017 Testing Image info [1MB]:
http://images.cocodataset.org/annotations/image_info_test2017.zip

2017 Unlabeled Image info [4MB]:
http://images.cocodataset.org/annotations/image_info_unlabeled2017.zip

KITTI

官网
http://www.cvlibs.net/datasets/kitti/

left color images of object data set (12 GB):
https://s3.eu-central-1.amazonaws.com/avg-kitti/data_object_image_2.zip

right color images, if you want to use stereo information (12 GB):
https://s3.eu-central-1.amazonaws.com/avg-kitti/data_object_image_3.zip

Velodyne point clouds, if you want to use laser information (29 GB):
https://s3.eu-central-1.amazonaws.com/avg-kitti/data_object_velodyne.zip

training labels of object data set (5 MB):
https://s3.eu-central-1.amazonaws.com/avg-kitti/data_object_label_2.zip

(只截取部分,详细请前往
官网
或 https://s3.eu-central-1.amazonaws.com/avg-kitti/)

MMPI

官网
http://human-pose.mpi-inf.mpg.de/#download

Images (12.9 GB)
https://datasets.d2.mpi-inf.mpg.de/andriluka14cvpr/mpii_human_pose_v1.tar.gz


Annotations (12.5 MB)
https://datasets.d2.mpi-inf.mpg.de/andriluka14cvpr/mpii_human_pose_v1_u12_2.zip

反向代理提高下载速度

  • 可以反向代理的服务器
http://images.cocodataset.org/zips
http://images.cocodataset.org/annotations
https://s3.eu-central-1.amazonaws.com/avg-kitti
https://datasets.d2.mpi-inf.mpg.de/andriluka14cvpr
  • 反代服务器地址
hk1.functionweb.tk
us1.functionweb.tk
  • 使用方法
    把目标连接的域名换成以上任意域名即可,请自行更改为http协议。 即,

若目标连接为:
http://images.cocodataset.org/zips/train2014.zip
反代连接为:
http://us1.functionweb.tk/zips/train2014.zip

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

uncle_ll

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值