DataFun:知识图谱在线峰会

大规模知识图谱构建与更新

shopee

m
在这里插入图片描述

商品分类

在这里插入图片描述
多种语言语料,细粒度分类
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
文本,多模态等模型;
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
关键词,自动化样本构建。
在这里插入图片描述
在这里插入图片描述
分类错误
在这里插入图片描述
商品信息及分类信息拼接起来送进去学习
在这里插入图片描述
数据语料
在这里插入图片描述


商品属性识别

在这里插入图片描述
ner-mrc思路
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述


知识融合

在这里插入图片描述
在这里插入图片描述
映射关联
在这里插入图片描述
实体融合
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
基于图谱的语义相似,产品节点
在这里插入图片描述
好解释,好定制
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述


知识应用

在这里插入图片描述


未来

在这里插入图片描述
商品,商家,买家
在这里插入图片描述
AICG时代,大规模模型,与大规模进行整合
独特的业务知识对大模型进行微调


PlantData

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述


电力行业知识资源建设及场景化应用

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

翼支付

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述


知识图谱存储与计算论坛

蚂蚁金服

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

统一知识表示与复杂推理论坛

Oppo

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

知识图谱推理在医学领域有着广泛的应用。医学知识图谱推理可以帮助医生收集健康数据、诊断疾病和控制错误。例如,一些研究提出了基于规则推理和案例推理的混合方法来构建临床决策支持系统,帮助重症监护病房(ICU)的医生做出决策。还有一些研究设计了基于逻辑推理和概率细化的本体驱动的鉴别诊断系统,以及基于本体的智能监护治疗系统,通过推理过程向医生提供治疗建议。此外,还有研究将中医药知识图谱中存储的数据转换为推理规则,根据患者数据推断出辅助处方。医学知识图谱推理的目标是处理大量重复的矛盾信息,提高医学诊断的自动化水平,减少诊断时间。然而,传统的知推理方法存在学习能力不足、数据利用率低等问题。因此,需要进一步研究和探索高效的医学推理模型来应对医学领域中不断增长的数据和信息缺失的挑战。\[2\] 在知识图谱推理的研究中,有几种常见的推理方法。基于规则的推理是其中之一,它使用一阶谓词逻辑规则来进行推理。另一种是基于表示学习的推理,它使用张量分解、距离模型、语义匹配模型等方法来进行推理。还有基于多源信息和基于神经网络和强化学习的推理方法。这些推理方法可以帮助我们从知识图谱中推断出新的知和关系。\[3\] 总而言之,知识图谱推理在医学领域有着广泛的应用,可以帮助医生做出诊断和治疗决策。通过推理方法,我们可以从医学知识图谱中获取更多的信息,并提高医学诊断的准确性和效率。\[2\] #### 引用[.reference_title] - *1* [基于逻辑规则的图谱推理](https://blog.csdn.net/DataFun_Hoh/article/details/124544287)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control_2,239^v4^insert_chatgpt"}} ] [.reference_item] - *2* *3* [基于知识图谱的知推理](https://blog.csdn.net/minggelin1997/article/details/109024359)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control_2,239^v4^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

uncle_ll

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值