OpenMMLab与PaddlePaddle算法库内容对比


上一篇文章中总结了当前深度学习视觉算法的主流开源库,详见[开源深度学习视觉算法库总结对比](https://blog.csdn.net/unique_zhao/article/details/147050259?spm=1011.2415.3001.10575&sharefrom=mp_manage_link)。 总结后可以看出**OpenMMLab和PaddlePaddle系列可以算是内容最为全面丰富的两个库,例如分类、检测、分割等功能都会单独作为一个库来使用,本篇将具体从多个维度对两个开源库进行对比**。


OpenMMLab与PaddlePaddle算法库内容对比

官网链接:
OpenMMLab:https://openmmlab.com/codebase
PaddlePaddle:https://www.paddlepaddle.org.cn/

OpenMMlab

在这里插入图片描述

概览

在这里插入图片描述
MMLab总体由4个部分构成:

  • Deep Learning Framework:是基于pytorch框架的
  • Foundational Libraries:基础库,包含MMCV与MMEngine,其各个视觉库模块的开发都是基于这两个底层库
  • Computer Vision Libraries:具体的视觉任务库,例如分类、检测、分割等,每个库中基于其Foundational Libraies集成了丰富的模型
  • Deployment:部署库,Computer Vision Libraries中训练好的模型,可以通过Deployment进行部署,例如转为onnx格式等

MMLab包含的子库

如果你了解过深度学习视觉,那么你对mmdection一定不会陌生,而mmdetection只是MMLab在目标检测方向的子模块,也是最初打出名声的核心模块,不过,MMLab当前的的内容远不止目标检测,还有分类、分割、OCR、旋转目标检测、3D目标检测、目标跟踪等等,如上图所示,MMLab有30+计算机视觉库,下面总结了MMLab github中展示的star数排名前30的子库介绍:

序号子库名称描述编程语言Fork 数Star 数
1mmdetectionOpenMMLab Detection Toolbox and Benchmark
OpenMMLab检测工具箱和基准测试
Python9.6k31k
2AmphionAmphion (/æmˈfaɪən/) is a toolkit for Audio, Music, and Speech Generation. Its purpose is to support reproducible research and help junior researchers and engineers get started in the field of audio, music, and speech generation research and development.
Amphion是一个用于音频、音乐和语音生成的工具包。其目的是支持可复现的研究,并帮助初级研究人员和工程师在音频、音乐和语音生成领域的研究和开发中入门
Python6978.9k
3mmsegmentationOpenMMLab Semantic Segmentation Toolbox and Benchmark.
OpenMMLab语义分割工具箱和基准测试
Python2.7k8.8k
4mmagicOpenMMLab Multimodal Advanced, Generative, and Intelligent Creation Toolbox. Unlock the magic 🪄: Generative-AI (AIGC), easy-to-use APIs, awesome model zoo, diffusion models, for text-to-image generation, image/video restoration/enhancement, etc.
OpenMMLab多模态高级、生成式和智能创作工具箱。解锁魔法:生成式人工智能(AIGC)、易于使用的API、强大的模型库、扩散模型,用于文本到图像生成、图像/视频修复/增强等
Jupyter Notebook1.1k7.1k
5mmposeOpenMMLab Pose Estimation Toolbox and Benchmark.
OpenMMLab姿态估计工具箱和基准测试
Python1.3k6.3k
6mmcvOpenMMLab Computer Vision Foundation
OpenMMLab计算机视觉基础库
Python1.7k6.1k
7mmdetection3dOpenMMLab’s next-generation platform for general 3D object detection.
OpenMMLab下一代通用3D目标检测平台
Python1.6k5.7k
8OpenPCDetOpenPCDet Toolbox for LiDAR-based 3D Object Detection.
基于激光雷达的3D目标检测工具箱
Python1.3k4.9k
9mmaction2OpenMMLab’s Next Generation Video Understanding Toolbox and Benchmark
OpenMMLab下一代视频理解工具箱和基准测试
Python1.3k4.5k
10mmocrOpenMMLab Text Detection, Recognition and Understanding Toolbox
OpenMMLab文本检测、识别和理解工具箱
Python7574.5k
11mmtrackingOpenMMLab Video Perception Toolbox. It supports Video Object Detection (VID), Multiple Object Tracking (MOT), Single Object Tracking (SOT), Video Instance Segmentation (VIS) with a unified framework.
OpenMMLab视频感知工具箱。它支持视频目标检测(VID)、多目标跟踪(MOT)、单目标跟踪(SOT)、视频实例分割(VIS)的统一框架
Python5983.7k
12mmpretrainOpenMMLab Pre-training Toolbox and Benchmark
OpenMMLab预训练工具箱和基准测试
Python1.1k3.6k
13mmselfsupOpenMMLab Self-Supervised Learning Toolbox and Benchmark
OpenMMLab自监督学习工具箱和基准测试
Python4363.2k
14mmyoloOpenMMLab YOLO series toolbox and benchmark. Implemented RTMDet, RTMDet-Rotated, YOLOv5, YOLOv6, YOLOv7, YOLOv8, YOLOX, PPYOLOE, etc.
OpenMMLab YOLO系列工具箱和基准测试。实现了RTMDet、RTMDet-Rotated、YOLOv5、YOLOv6、YOLOv7、YOLOv8、YOLOX、PPYOLOE等
Python5653.1k
15mmskeletonA OpenMMLAB toolbox for human pose estimation, skeleton-based action recognition, and action synthesis.
一个OpenMMLab工具箱,用于人体姿态估计、基于骨架的动作识别和动作合成
Python1k3k
16mmdeployOpenMMLab Model Deployment Framework
OpenMMLab模型部署框架
Python6592.9k
17mmgenerationMMGeneration is a powerful toolkit for generative models, based on PyTorch and MMCV.
MMGeneration是一个基于PyTorch和MMCV的强大生成模型工具包
Python2322k
18mmrotateOpenMMLab Rotated Object Detection Toolbox and Benchmark
OpenMMLab旋转目标检测工具箱和基准测试
Python5792k
19mmactionAn open-source toolbox for action understanding based on PyTorch
一个基于PyTorch的动作理解开源工具箱
Python3501.9k
20mmrazorOpenMMLab Model Compression Toolbox and Benchmark.
OpenMMLab模型压缩工具箱和基准测试
Python2361.6k
21Multimodal-GPT多模态GPTPython1311.5k
22mmhuman3dOpenMMLab 3D Human Parametric Model Toolbox and Benchmark
OpenMMLab 3D人体参数化模型工具箱和基准测试
Python1451.3k
23mmfashionOpen-source toolbox for visual fashion analysis based on PyTorch
基于PyTorch的视觉时尚分析开源工具箱
Python2871.3k
24mmengineOpenMMLab Foundational Library for Training Deep Learning Models
OpenMMLab训练深度学习模型的基础库
Python3841.3k
25playgroundA central hub for gathering and showcasing amazing projects that extend OpenMMLab with SAM and other exciting features.
一个中心枢纽,用于收集和展示通过SAM和其他令人兴奋的功能扩展OpenMMLab的惊人项目
Python1261.2k
26OpenMMLabCourseOpenMMLab course index and stuff
OpenMMLab课程索引及相关资料
Jupyter Notebook1371.1k
27mmflowOpenMMLab optical flow toolbox and benchmark
OpenMMLab光流工具箱和基准测试
Python1151k
28PIA[CVPR 2024] PIA, your Personalized Image Animator. Animate your images by text prompt, combing with Dreambooth, achieving stunning videos. PIA,你的个性化图像动画生成器,利用文本提示将图像变为奇妙的动画Python75954
29PowerPaint[ECCV 2024] PowerPaint, a versatile image inpainting model that supports text-guided object inpainting, object removal, image outpainting and shape-guided object inpainting with only a single model. 一个高质量多功能的图像修补模型,可以同时支持插入物体、移除物体、图像扩展、形状可控的物体生成,只需要一个模型Python54857
30mmfewshotOpenMMLab FewShot Learning Toolbox and Benchmark
OpenMMLab少样本学习工具箱和基准
Python120723

子库总结

  • 从star数排名靠前的子库可以看出,MMLab的最火的3个方面在于检测(mmdetection)、音频生成(Amphion)、分割(mmsegmentation)
  • star数可以反映研究者或者开发者对该库的使用和认可情况,后面star数较少的子库有一些mmlab社区开发者们的单个最新算法的发布,以mm开头的基本都是集成库

PaddlePaddle

在这里插入图片描述

Paddle概览

在这里插入图片描述
在这里插入图片描述

包含的子库

子库名称描述编程语言fork数star数
PaddleOCR基于 PaddlePaddle 的强大多语言 OCR 工具包,支持 80+ 种语言识别,提供数据标注和合成工具,支持在服务器、移动设备、嵌入式和物联网设备之间的训练和部署Python8.1k48k
PaddlePaddlePaddle 核心框架,支持深度学习和机器学习的高性能单机、分布式训练和跨平台部署C++5.7k23k
PaddleDetection基于 PaddlePaddle 的目标检测工具包,支持目标检测、实例分割、多目标跟踪和实时多人关键点检测Python2.9k13k
PaddleHub基于 PaddlePaddle 的预训练模型工具包,包含 400+ 模型,涵盖图像、文本、音频、视频和跨模态,支持简单推理和部署Python2.1k13k
PaddleNLP易于使用且功能强大的 LLM 和 SLM 库,拥有出色的模型库Python3k12k
PaddleSpeech易于使用的语音工具包,包含自监督学习模型、带标点的 SOTA/流式 ASR、带文本前端的流式 TTS、说话人验证系统、端到端语音翻译和关键词检测Python1.9k12k
PaddleSeg易于使用的图像分割库,支持语义分割、交互式分割、全景分割、图像抠图、3D 分割等多种实际任务Python1.7k9k
PaddleGANPaddlePaddle GAN 库,包含一阶运动转移、Wav2Lip、图片修复、图像编辑、照片转卡通、图像风格迁移等应用Python1.3k8k
Paddle-LitePaddlePaddle 高性能深度学习端侧推理引擎,适用于移动和边缘设备C++1.6k7.1k
modelsPaddlePaddle 官方维护的模型库,涵盖计算机视觉、自然语言处理、语音、推荐、时间序列等领域Python2.9k6.9k
ERNIEERNIE 家族预训练模型的官方实现,涵盖语言理解与生成、多模态理解与生成等主题Python1.3k6.4k
PaddleClas由 PaddlePaddle 提供支持的视觉分类和识别工具库Python1.2k5.6k
PaddleX基于 PaddlePaddle 的一站式开发工具Python1k5.3k
VisualDLPaddlePaddle 深度学习可视化工具HTML6294.8k
PaddleRec大规模推荐算法库,包含推荐系统经典及最新算法Python6463.9k
PARL用于强化学习的高性能分布式训练框架Python8213.3k
FastDeploy易于使用且快速的深度学习模型部署工具包,支持云、移动和边缘设备,涵盖图像、视频、文本和音频等多种场景C++4773.1k
PaddleVideo基于 PaddlePaddle 的视频理解工具包,支持视频数据标注工具、轻量级动作识别模型及视频标签和运动检测等应用Python3831.6k
PaddleSlimPaddlePaddle 模型压缩和架构搜索工具库Python3511.6k
PGL基于 PaddlePaddle 的高效灵活图学习框架Python3121.6k
PaddleHelix“螺旋桨”生物计算工具集,支持大规模表示学习和多任务深度学习Python2291.1k
Paddle.jsPaddlePaddle 的 Web 项目,支持在浏览器中运行深度学习模型JavaScript1441k
ServingPaddlePaddle 服务化部署框架,支持高性能模型部署C++251904
Paddle2ONNXPaddlePaddle 模型转换为 ONNX 格式的工具C++175790
RocketQA基于 PaddlePaddle 的信息检索和问答系统,支持中英文 SOTA 模型Python126775
X2PaddlePaddlePaddle 深度学习模型转换工具Python162750
Knover基于 PaddlePaddle 的大规模开放领域知识引导对话系统。Python672130
PaddleMIXPaddle 多模态集成与探索,支持主流多模态任务,包括大规模多模态预训练模型和扩散模型工具箱。Python610201
Quantum量子计算相关项目。Jupyter Notebook608182
ParakeetPaddle 并行文本到语音工具包(支持 Tacotron2、Transformer TTS、FastSpeech2/FastPitch、SpeedySpeech、WaveFlow 和 Parallel WaveGAN)。Python60283
Paddle3D基于 PaddlePaddle 的 3D 计算机视觉开发工具包。支持点云目标检测、分割和单目 3D 目标检测模型。Python600145
PaddleYOLOPaddlePaddle 实现的 YOLO 系列,包括 PP-YOLOE+、RT-DETR、YOLOv5、YOLOv6、YOLOv7、YOLOv8、YOLOv10、YOLOv11、YOLOX、YOLOv5u、YOLOv7u、YOLOv6Lite、RTMDet 等。Python596142
FlyCV用于处理计算机视觉任务的高性能库。C++58863
Anakin高性能跨平台推理引擎,可在 x86-cpu、arm、nv-gpu、amd-gpu、bitmain 和 cambricon 设备上运行。C++533133
PaddleTS基于 PaddlePaddle 的深度时间序列建模工具,包括 TSDataset、分析、转换、模型、AutoTS 和集成等功能模块,支持时间序列预测、表示学习和异常检测等任务。Python515122
PaddleFLPaddlePaddle 中的联邦深度学习。Python502121
VIMER视觉预训练基础模型仓库。Python49892
PaddleFleetX飞桨大模型开发套件,提供大语言模型、跨模态大模型、生物计算大模型等领域的全流程开发工具链。Python466164
PaddleRS基于 PaddlePaddle 的遥感工具包。Python42894
ERNIE-SDKERNIE Bot Agent 是一个大型语言模型(LLM)代理框架,由 ERNIE Bot 的先进能力和百度 AI Studio 的平台资源提供支持。Jupyter Notebook36353
PaddleSpatial基于 PaddlePaddle 的时空计算工具。GLSL352172
PaddleScience基于 PaddlePaddle 的 AI 驱动科学计算应用开发 SDK 和库。Python341199
PaddleCloudPaddlePaddle Docker 镜像和 K8s 操作符,供 PaddleOCR/Detection 开发人员在公有云或私有云上使用。Go29178
MetaGym强化学习/元强化学习环境的集合。Python29060
PASSL包含图像自监督算法(如 SimCLR、MoCo v1/v2、BYOL、CLIP 等)和基础视觉算法(如 Vision Transformer、DEiT 等)。Python28265
InterpretDL基于飞桨的深度学习模型可解释性算法库。Python25040
PaddleRobotics基于 Paddle 的机器人开源算法库,包括人机交互、复杂运动控制、环境感知、SLAM 定位和导航等开源部分。Python22756
TrustAI飞桨可信 AI。Python18737
PALM一个快速、灵活、可扩展且易于使用的 NLP 大规模预训练和多任务学习框架。Python18330
ElasticCTR基于 Kubernetes 的企业级推荐系统开源解决方案,融合高精度 CTR 模型和大规模分布式训练能力。Python18244
AutoDL自动深度学习工具。Python15729
PLSCPaddle 大规模分类工具,支持 ArcFace、CosFace、PartialFC、数据并行 + 模型并行。模型包括 ResNet、ViT、Swin、DeiT、CaiT、FaceViT、MoCo、MAE 等。Python15234

paddle库总结

  • 飞桨github库中包含的内容非常丰富,除了深度学习视觉任务相关库,还涵盖量子计算、联邦学习、推理引擎、推荐系统、强化学习等;
  • 通过概览中其官网主推的几项功能,以及子库star数排名前列的库可以看出,paddle在OCR(PaddleOCR)和目标检测(PaddleDetection)方面具备优势

针对单独模块的对比

针对具体的子任务,分析两个库的能力,会从多个详细维度进行对比,并在最后从以下几个维度考虑选型:

  • 模型库更新速度
  • 易用性
  • 二次开发便利性
  • 其他

目标检测

针对 MMDetection(OpenMMLab)和 PaddleDetection(百度飞桨)两个目标检测库的多维度对比分析:

核心维度对比
对比维度MMDetectionPaddleDetection
框架依赖PyTorchPaddlePaddle
开源社区🔸国际社区活跃(GitHub stars: 25k+)中文社区主导(GitHub stars: 12k+),国内企业支持
模型丰富度🔸支持 100+模型(Faster R-CNN、YOLO系列、DETR、Mask R-CNN等)支持 50+模型(PP-YOLO系列、Faster R-CNN、YOLOX、CenterNet等)
预训练模型基于COCO、VOC等公开数据集,模型精度高提供大量 工业级优化模型(如PP-YOLO、PP-PicoDet,PP开头的都是自研的模型),侧重速度和部署性能
文档与教程英文文档为主,技术细节详细但需一定学习成本中文文档完善,案例丰富(含产业实践教程)
部署支持依赖TorchScript/ONNX,需配合第三方工具(如TensorRT、ONNX)🔸内置 全流程部署工具链(Paddle Inference、Paddle Lite、Paddle Serving)
灵活性🔸模块化设计,支持高度自定义模型结构配置较为固定,扩展需深入PaddlePaddle生态
训练效率分布式训练支持完善,多GPU训练性能优秀分布式训练优化(支持超大规模数据),内置混合精度训练加速
推理速度依赖硬件和模型优化(如TensorRT加速)原生推理性能强,轻量化模型(PP-PicoDet)在移动端表现突出
中文支持社区讨论以英文为主、国际化中文文档、中文案例、中文社区(飞桨官方论坛、AI Studio学习平台)
多任务扩展需配合MM系列其他库(如MMSeg、MMTracking)🔸内置多任务支持(检测+跟踪+关键点),与其他Paddle套件(如PaddleSeg)无缝集成
政策与生态国际通用,无特殊限制符合国内数据安全与国产化需求,适配国产硬件(如昇腾、飞腾)
其他辅助维度对比
对比维度MMDetectionPaddleDetection
模型压缩与优化依赖第三方工具(如NNI、PyTorch原生量化)🔸内置 模型压缩工具(PaddleSlim),支持量化、剪枝、蒸馏等一体化优化
数据增强功能提供丰富的数据增强方法(MixUp、Mosaic等),可灵活配置内置产业级数据增强(如AutoAugment优化版),支持自定义但需适配Paddle数据格式
可视化工具依赖第三方(如TensorBoard)🔸内置 VisualDL,支持训练日志、模型结构、数据分布可视化
产业实践案例学术论文复现为主,产业案例较少🔸提供 安防、医疗、遥感等产业级解决方案(如PCB缺陷检测、交通流量统计)
跨平台兼容性支持Linux/Windows,依赖PyTorch生态🔸支持Linux/Windows/Android/iOS,国产OS(如麒麟)适配更优
模型训练门槛需要熟悉PyTorch和MMLab配置系统🔸低代码开发支持(AI Studio云端平台),适合初学者快速上手

场景化选择建议
1. 学术研究/前沿探索/模型更新速度
  • 推荐MMDetection
    • 优势:模型丰富(支持DETR等Transformer模型),模块化设计便于复现论文、调整模型结构。
    • 场景:目标检测算法创新、多任务联合研究(检测+分割)。
2. 工业部署/国产化需求
  • 推荐PaddleDetection
    • 优势:预训练模型针对部署优化(如PP-YOLO-E+),支持国产硬件,提供从训练到端侧推理的全流程工具链。
    • 场景:安防监控、移动端APP、国产服务器部署。
3. 中文团队/快速落地
  • 推荐PaddleDetection
    • 优势:中文文档和社区支持完善,提供产业级案例和AI Studio免费算力资源。
    • 场景:中小企业快速开发、教育领域教学实践。
4. 二次开发/国际协作
  • 推荐MMDetection
    • 优势:模块化设计,便于开发者自定义,社区活跃,易于与国际团队协作。
    • 场景:跨国项目、开源社区贡献、复杂模型改造。
5. 模型效果
  • 准确性上推荐MMDetection
  • 效率和部署上推荐PaddleDetection

总结

  • 需要注意,开源集成类算法库的优势在于多种任务、模型的集成,缺乏及时性,若要关注最新的算法模型,则需要直接去论文作者发布的算法库。例如MMLab中如果将repo按最新日期排序,则可以看到多篇最新发布的功能或论文,都是单独的库
  • 当涉及不同任务时,可以考虑结合各自的优势,例如OCR任务使用Paddle,检测分割任务使用MMLab
  • 如果考虑计算机视觉任务任务外更丰富的功能,可以借助PaddlePaddle
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值