狄妮定理

原始定理

{ f n ( x ) } \{f_n(x)\} {fn(x)} [ a , b ] [a,b] [a,b]上满足

  • ∀ x ∈ [ a , b ] \forall x\in[a,b] x[a,b] { f n ( x ) } \{f_n(x)\} {fn(x)}为单调(注意:这里是固定x对n单调),且 lim ⁡ n → ∞ f n ( x ) = f ( x ) \lim\limits_{n\to\infty}f_n(x)=f(x) nlimfn(x)=f(x)
  • f , f n f,f_n f,fn都连续

f n ( x ) ⇉ f ( x ) , x ∈ [ a , b ] f_n(x)\rightrightarrows f(x),x\in[a,b] fn(x)f(x),x[a,b]

等价定理

  • ψ n ( x ) = ∣ f n ( x ) − f ( x ) ∣ \psi_n(x)=|f_n(x)-f(x)| ψn(x)=fn(x)f(x)则上述定理 ⇔ \Leftrightarrow
  • ∀ x ∈ [ a , b ] \forall x\in[a,b] x[a,b] { ψ n ( x ) } \{\psi_n(x)\} {ψn(x)}随n单调递减,且 lim ⁡ n → ∞ ψ n ( x ) = 0 \lim\limits_{n\to\infty}\psi_n(x)=0 nlimψn(x)=0
  • ψ n ( x ) \psi_n(x) ψn(x)连续

ψ n ( x ) ⇉ 0 , x ∈ [ a , b ] \psi_n(x)\rightrightarrows 0,x\in[a,b] ψn(x)0x[a,b]

证明

只用证明等价定理,由于 ψ n \psi_n ψn非负且关于n单调,因此只需要证明 ∀ ε > 0 , ∃ n ∈ N , 使 得 对 ∀ x ∈ [ a , b ] , 有 \forall\varepsilon>0,\exist n\in N,使得对\forall x\in[a,b],有 ε>0,nN,使x[a,b] ψ n ( x ) < ε \psi_n(x)<\varepsilon ψn(x)<ε则只要证明 ψ n \psi_n ψn在区间上的最大值 < ε <\varepsilon <ε即可

  • ψ n \psi_n ψn连续可知,对每一个n, ψ n 在 [ a , b ] \psi_n在[a,b] ψn[a,b]上都存在最大值,设它在 x n x_n xn点取得的最大值为 M n M_n Mn
  • 又由于 { x n } \{x_n\} {xn}是有界数列,故存在一收敛子列 { x n k } \{x_{n_k}\} {xnk},且收敛子列有极限值 x 0 x_0 x0,即 lim ⁡ k → ∞ x n k = x 0 \lim\limits_{k\to\infty}x_{n_k}=x_0 klimxnk=x0
  • x 0 x_0 x0满足 lim ⁡ n → ∞ ψ n ( x 0 ) = 0 \lim\limits_{n\to\infty}\psi_n(x_0)=0 nlimψn(x0)=0于是对 ∀ ε > 0 , ∃ m ∈ N , 使 得 \forall\varepsilon>0,\exist m\in N,使得 ε>0,mN使 ψ m ( x 0 ) < ε \psi_m(x_0)<\varepsilon ψm(x0)<ε
  • 再证明 ψ m ( x n k ) < ε \psi_m(x_{n_k})<\varepsilon ψm(xnk)<ε:由于 ψ m \psi_m ψm连续,因此有 lim ⁡ k → ∞ ψ m ( x n k ) = ψ m ( x 0 ) \lim\limits_{k\to\infty}\psi_m(x_{n_k})=\psi_m(x_0) klimψm(xnk)=ψm(x0)于是由于 ψ m ( x 0 ) < ε \psi_m(x_0)<\varepsilon ψm(x0)<ε,知 ∃ k 0 ∈ N , 当 k > k 0 时 , 有 : ψ m ( x n k ) < ε \exist k_0\in N,当k>k_0时,有:\psi_m(x_{n_k})<\varepsilon k0N,k>k0ψm(xnk)<ε
  • 再取一个 k > k 0 , 且 让 n k ≥ m k>k_0,且让n_k\ge m k>k0,nkm,由 { ψ n } \{\psi_n\} {ψn}单调递减,有 M n k = ψ n k ( x n k ) ≤ ψ m ( x n k ) < ε M_{n_k}=\psi_{n_k}(x_{n_k})\le\psi_m(x_{n_k})<\varepsilon Mnk=ψnk(xnk)ψm(xnk)<ε n = n k n=n_k n=nk,有: M n 是 ψ n 在 [ a , b ] M_n是\psi_n在[a,b] Mnψn[a,b]上的最大值,故对任意x,有 ψ n ( x ) < ε \psi_n(x)<\varepsilon ψn(x)<ε,从而证明函数列一致收敛于0
  • 0
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

universe_1207

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值