题1
- 设 u n ( x ) = 1 n 3 ln ( 1 + n 2 x 2 ) u_n(x)=\frac1{n^3}\ln(1+n^2x^2) un(x)=n31ln(1+n2x2)
- 证明: ∑ u n ( x ) \sum u_n(x) ∑un(x)在 [ 0 , 1 ] [0,1] [0,1]上一致收敛,并讨论和函数在 [ 0 , 1 ] [0,1] [0,1]上的连续性、可鸡性、可微性
解
- 先证明一致收敛
- 啊这里真是疏忽了,只知道 ln ( 1 + x ) < x \ln(1+x)<x ln(1+x)<x,却没能把结论拓展一下:也有 ln ( 1 + x 2 ) < x \ln(1+x^2)<x ln(1+x2)<x所以就有 1 n 3 ln ( 1 + n 2 x 2 ) ≤ 1 n 3 ln ( 1 + n 2 ) < 1 n 2 \frac1{n^3}\ln(1+n^2x^2)\le\frac1{n^3}\ln(1+n^2)<\frac1{n^2} n31ln(1+n2x2)≤n31ln(1+n2)<n21M判别法一下就出来了
- 于是连续性、可鸡性可证
- 要证可微性,还需要得到 ∑ u n ′ ( x ) \sum u_n'(x) ∑un′(x)的一致连续性: u n ′ ( x ) = 2 x n ( 1 + n 2 x 2 ) ≤ 2 x n ⋅ 2 n x = 1 n 2 u_n'(x)=\frac{2x}{n(1+n^2x^2)}\le\frac{2x}{n\cdot2nx}=\frac1{n^2} un′(x)=n(1+n2x2)2x≤n⋅2nx2x=n21于是一致收敛,可微
题2
证明:函数 ζ ( x ) = ∑ n = 1 ∞ 1 n x \zeta(x)=\sum\limits_{n=1}^{\infty}\frac1{n^x} ζ(x)=n=1∑∞nx1在 ( 1 , + ∞ ) (1,+\infty) (1,+∞)上有连续的各阶导函数
解
- 首先这里我犯了个大错!!对 1 n x \frac1{n^x} nx1求导的时候我搞成对 x a x^a xa求导那样做了!!应该是对 e − x ln n e^{-x\ln n} e−xlnn求,发现 u n ′ ( x ) = 1 n x ⋅ ( − ln n ) u_n'(x)=\frac1{n^x}\cdot(-\ln n) un′(x)=nx1⋅(−lnn) u n ( k ) ( x ) = ( − 1 ) k ln k ( n ) n x , k = 1 , 2 , . . . u_n^{(k)}(x)=\frac{(-1)^k\ln^k(n)}{n^x},k=1,2,... un(k)(x)=nx(−1)klnk(n),k=1,2,...
- 下面证明 ∑ u n ( k ) ( x ) \sum u_n^{(k)}(x) ∑un(k)(x)内闭一致收敛:设 [ a , b ] ⊂ ( 1 , + ∞ ) , 对 ∀ x ∈ [ a , b ] [a,b]\subset(1,+\infty),对\forall x\in[a,b] [a,b]⊂(1,+∞),对∀x∈[a,b],有 ∣ u n ( k ) ( x ) ∣ = ln k ( n ) n x ≤ ln k ( n ) n a |u_n^{(k)}(x)|=\frac{\ln^k(n)}{n^x}\le\frac{\ln^k(n)}{n^a} ∣un(k)(x)∣=nxlnk(n)≤nalnk(n)
- 而这里需要注意一点!!!只要 β > 0 , 对 ∀ k > 0 \beta>0,对\forall k>0 β>0,对∀k>0都有 lim n → ∞ ln k ( n ) n β = 0 \lim\limits_{n\to\infty}\frac{\ln^k(n)}{n^{\beta}}=0 n→∞limnβlnk(n)=0
- 所以!骚操作来啦:由于 lim n → ∞ ln k ( n ) n a − 1 2 = 0 \lim\limits_{n\to\infty}\frac{\ln^k(n)}{n^{\frac{a-1}2}}=0 n→∞limn2a−1lnk(n)=0于是当n充分大时, ln k ( n ) n a − 1 2 < 1 \frac{\ln^k(n)}{n^{\frac{a-1}2}}<1 n2a−1lnk(n)<1于是有 ln k ( n ) n a = 1 n ( a + 1 ) / 2 ⋅ ln k ( n ) n a − 1 2 < 1 n ( a + 1 ) / 2 \frac{\ln^k(n)}{n^a}=\frac1{n^{(a+1)/2}}\cdot\frac{\ln^k(n)}{n^{\frac{a-1}2}}<\frac1{n^{(a+1)/2}} nalnk(n)=n(a+1)/21⋅n2a−1lnk(n)<n(a+1)/21
- 由于 ∑ 1 n ( a + 1 ) / 2 \sum \frac1{n^{(a+1)/2}} ∑n(a+1)/21收敛,所以 ∑ u n ( k ) ( x ) \sum u_n^{(k)}(x) ∑un(k)(x)在 [ a , b ] [a,b] [a,b]上一致收敛,故在 ( 1 , + ∞ ) (1,+\infty) (1,+∞)上内闭一致收敛
- 先应用由函数项级数可微性定理得到,有各阶导函数,再由连续性定理得到各阶导函数连续