关于函数项级数的两道课本例题

文章目录

题1

  • u n ( x ) = 1 n 3 ln ⁡ ( 1 + n 2 x 2 ) u_n(x)=\frac1{n^3}\ln(1+n^2x^2) un(x)=n31ln(1+n2x2)
  • 证明: ∑ u n ( x ) \sum u_n(x) un(x) [ 0 , 1 ] [0,1] [0,1]上一致收敛,并讨论和函数在 [ 0 , 1 ] [0,1] [0,1]上的连续性、可鸡性、可微性

  • 先证明一致收敛
  • 啊这里真是疏忽了,只知道 ln ⁡ ( 1 + x ) < x \ln(1+x)<x ln(1+x)<x,却没能把结论拓展一下:也有 ln ⁡ ( 1 + x 2 ) < x \ln(1+x^2)<x ln(1+x2)<x所以就有 1 n 3 ln ⁡ ( 1 + n 2 x 2 ) ≤ 1 n 3 ln ⁡ ( 1 + n 2 ) < 1 n 2 \frac1{n^3}\ln(1+n^2x^2)\le\frac1{n^3}\ln(1+n^2)<\frac1{n^2} n31ln(1+n2x2)n31ln(1+n2)<n21M判别法一下就出来了
  • 于是连续性、可鸡性可证
  • 要证可微性,还需要得到 ∑ u n ′ ( x ) \sum u_n'(x) un(x)的一致连续性: u n ′ ( x ) = 2 x n ( 1 + n 2 x 2 ) ≤ 2 x n ⋅ 2 n x = 1 n 2 u_n'(x)=\frac{2x}{n(1+n^2x^2)}\le\frac{2x}{n\cdot2nx}=\frac1{n^2} un(x)=n(1+n2x2)2xn2nx2x=n21于是一致收敛,可微

题2

证明:函数 ζ ( x ) = ∑ n = 1 ∞ 1 n x \zeta(x)=\sum\limits_{n=1}^{\infty}\frac1{n^x} ζ(x)=n=1nx1 ( 1 , + ∞ ) (1,+\infty) (1,+)上有连续的各阶导函数

  • 首先这里我犯了个大错!!对 1 n x \frac1{n^x} nx1求导的时候我搞成对 x a x^a xa求导那样做了!!应该是对 e − x ln ⁡ n e^{-x\ln n} exlnn求,发现 u n ′ ( x ) = 1 n x ⋅ ( − ln ⁡ n ) u_n'(x)=\frac1{n^x}\cdot(-\ln n) un(x)=nx1(lnn) u n ( k ) ( x ) = ( − 1 ) k ln ⁡ k ( n ) n x , k = 1 , 2 , . . . u_n^{(k)}(x)=\frac{(-1)^k\ln^k(n)}{n^x},k=1,2,... un(k)(x)=nx(1)klnk(n),k=1,2,...
  • 下面证明 ∑ u n ( k ) ( x ) \sum u_n^{(k)}(x) un(k)(x)内闭一致收敛:设 [ a , b ] ⊂ ( 1 , + ∞ ) , 对 ∀ x ∈ [ a , b ] [a,b]\subset(1,+\infty),对\forall x\in[a,b] [a,b](1,+)x[a,b],有 ∣ u n ( k ) ( x ) ∣ = ln ⁡ k ( n ) n x ≤ ln ⁡ k ( n ) n a |u_n^{(k)}(x)|=\frac{\ln^k(n)}{n^x}\le\frac{\ln^k(n)}{n^a} un(k)(x)=nxlnk(n)nalnk(n)
  • 而这里需要注意一点!!!只要 β > 0 , 对 ∀ k > 0 \beta>0,对\forall k>0 β>0,k>0都有 lim ⁡ n → ∞ ln ⁡ k ( n ) n β = 0 \lim\limits_{n\to\infty}\frac{\ln^k(n)}{n^{\beta}}=0 nlimnβlnk(n)=0
  • 所以!骚操作来啦:由于 lim ⁡ n → ∞ ln ⁡ k ( n ) n a − 1 2 = 0 \lim\limits_{n\to\infty}\frac{\ln^k(n)}{n^{\frac{a-1}2}}=0 nlimn2a1lnk(n)=0于是当n充分大时, ln ⁡ k ( n ) n a − 1 2 < 1 \frac{\ln^k(n)}{n^{\frac{a-1}2}}<1 n2a1lnk(n)<1于是有 ln ⁡ k ( n ) n a = 1 n ( a + 1 ) / 2 ⋅ ln ⁡ k ( n ) n a − 1 2 < 1 n ( a + 1 ) / 2 \frac{\ln^k(n)}{n^a}=\frac1{n^{(a+1)/2}}\cdot\frac{\ln^k(n)}{n^{\frac{a-1}2}}<\frac1{n^{(a+1)/2}} nalnk(n)=n(a+1)/21n2a1lnk(n)<n(a+1)/21
  • 由于 ∑ 1 n ( a + 1 ) / 2 \sum \frac1{n^{(a+1)/2}} n(a+1)/21收敛,所以 ∑ u n ( k ) ( x ) \sum u_n^{(k)}(x) un(k)(x) [ a , b ] [a,b] [a,b]上一致收敛,故在 ( 1 , + ∞ ) (1,+\infty) (1,+)上内闭一致收敛
  • 先应用由函数项级数可微性定理得到,有各阶导函数,再由连续性定理得到各阶导函数连续
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

universe_1207

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值