非负函数无穷积分的收敛判别法

本文探讨了非负函数在[a,+∞)上的无穷积分收敛性,通过定理11.2的比较原则,分析了不同条件下的积分收敛与发散情况。推论1指出,当x→+∞时,f(x)/g(x)趋近于常数c,可以判断两函数积分的敛散性;推论2和3进一步提供了关于幂函数乘以指数函数的积分收敛性的判别准则。最后,文章提出了积分∫a+∞xαe^(-x)dx的收敛性问题,并根据比较原则给出了解答。" 115775196,4855887,PyQt5 QTreeWidget: 获取2级目录内容操作指南,"['PyQt5', 'GUI开发', 'QTreeWidget操作', '数据结构']
摘要由CSDN通过智能技术生成


以下都源于周老师的博客,明目张胆的copyヽ(゚∀゚)メ(゚∀゚)ノ

定理11.2(比较原则)

f , g f,g f,g定义在 [ a , + ∞ ) [a,+\infty) [a,+),且都非负函数,且满足
f ( x ) ≤ g ( x ) , x ∈ [ a , + ∞ ) f(x) \le g(x),\qquad x \in [a,+\infty) f(x)g(x)x[a,+)
右 边 收 敛 , 则 左 边 也 收 敛 右边收敛,则左边也收敛
左 边 发 散 , 则 右 边 也 发 散 左边发散,则右边也发散

例题1
看看 ∫ 0 + ∞ s i n x 1 + x 2 d x \int_{0}^{+\infty}\frac{sinx}{1+x^2}dx 0+1+x2sinxdx收敛还是发散呢????
在这里插入图片描述

推论1

f ( x ) , g ( x ) f(x),g(x) f(x)g(x)定义在 [ a , + ∞ ) [a,+\infty) [a,+),且 f ( x ) ≥ 0 , g ( x ) > 0 f(x) \ge 0,g(x)>0 f(x)0g(x)>0 lim ⁡ x → + ∞ f ( x ) g ( x ) = c \lim_{x \to +\infty}\frac{f(x)}{g(x)}=c x+limg(x)f(x)=c

  1. 0 &lt; c &lt; + ∞ 0&lt;c&lt;+\infty 0<c<+ ,两个狗东西同敛态。
  2. c = 0 c=0 c=0,若 g 收 , 则 f 收 g收,则f收 gf
  3. c = + ∞ c=+\infty c=+ 则 g 发 散 → f 发 散 则g发散\rightarrow f发散 gf

推论2

f f f定义在 [ a , + ∞ ) ( a &gt; 0 ) [a,+\infty)(a&gt;0) [a,+)(a>0)且可鸡,则

  1. 0 ≤ f ( x ) ≤ 1 x p , p &gt; 1 ⇒ 0\le f(x)\le\frac1{x^p},p&gt;1\Rightarrow 0f(x)xp1,p>1 ∫ a + ∞ f ( x ) d x 收 敛 \int_a^{+\infty}f(x)dx收敛 a+f(x)dx
  2. f ( x ) ≥ 1 x p , p ≤ 1 ⇒ f(x)\ge\frac1{x^p},p\le1\Rightarrow f(x)xp1,p1 ∫ a + ∞ f ( x ) d x 发 散 \int_a^{+\infty}f(x)dx发散 a+f(x)dx

推论3

f f f是定义在 [ a , + ∞ ) [a,+\infty) [a,+)上的非负且可鸡,若 lim ⁡ x → + ∞ x p f ( x ) = lim ⁡ x → + ∞ f ( x ) 1 x p = λ \lim\limits_{x\to+\infty}x^pf(x)=\lim\limits_{x\to+\infty}\frac{f(x)}{\frac1{x^p}}=\lambda x+limxpf(x)=x+limxp1f(x)=λ

  1. p &gt; 1 , 0 ≤ λ &lt; + ∞ ⇒ p&gt;1,0\le\lambda&lt;+\infty\Rightarrow p>1,0λ<+ ∫ a + ∞ f ( x ) d x 收 敛 \int_a^{+\infty}f(x)dx收敛 a+f(x)dx
  2. p ≤ 1 , 0 &lt; λ &lt; + ∞ ⇒ p\le1,0&lt;\lambda&lt;+\infty\Rightarrow p1,0<λ<+ ∫ a + ∞ f ( x ) d x 发 散 \int_a^{+\infty}f(x)dx发散 a+f(x)dx

提问!

∫ a + ∞ x α e − x d x 收 敛 吗 ? \int_a^{+\infty}x^{\alpha}e^{-x}dx收敛吗? a+xαexdx
回答
lim ⁡ x → + ∞ x α e x ⋅ x 2 = 0 , p &gt; 1 ⇒ 收 敛 ! ! \lim\limits_{x\to+\infty}\frac{x^{\alpha}}{e^{x}}\cdot x^2=0,p&gt;1\Rightarrow收敛!! x+limexxαx2=0,p>1

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值