性质3,记住啊!!!!!!!!!!!!!!!!!!!!
若
∫
a
+
∞
∣
f
(
x
)
∣
\int_{a}^{+ \infty}|f(x)|
∫a+∞∣f(x)∣收敛(也就是
∫
a
+
∞
f
(
x
)
\int_{a}^{+ \infty}f(x)
∫a+∞f(x)绝对收敛的意思),则
∫
a
+
∞
f
(
x
)
d
x
\int_{a}^{+ \infty}f(x)dx
∫a+∞f(x)dx亦收敛哦!
且有
(3)
∣
∫
a
+
∞
f
(
x
)
∣
d
x
≤
∫
a
+
∞
∣
f
(
x
)
∣
d
x
|\int_{a}^{+ \infty}f(x)|dx\le \int_{a}^{+ \infty}|f(x)|dx \tag{3}
∣∫a+∞f(x)∣dx≤∫a+∞∣f(x)∣dx(3)
一言以蔽之,绝对收敛的无穷积分本身也收敛。
非负函数无穷积分的收敛判别法
定理11.2(比较原则)
设
f
,
g
f,g
f,g定义在
[
a
,
+
∞
)
[a,+\infty)
[a,+∞),且都非负函数,且满足
f
(
x
)
≤
g
(
x
)
,
x
∈
[
a
,
+
∞
)
f(x) \le g(x),\qquad x \in [a,+\infty)
f(x)≤g(x),x∈[a,+∞)
则
右
边
收
敛
,
则
左
边
也
收
敛
右边收敛,则左边也收敛
右边收敛,则左边也收敛
左
边
发
散
,
则
右
边
也
发
散
左边发散,则右边也发散
左边发散,则右边也发散
例题1
看看
∫
0
+
∞
s
i
n
x
1
+
x
2
d
x
\int_{0}^{+\infty}\frac{sinx}{1+x^2}dx
∫0+∞1+x2sinxdx收敛还是发散呢????
推论1
f ( x ) , g ( x ) f(x),g(x) f(x),g(x)定义在 [ a , + ∞ ) [a,+\infty) [a,+∞),且 f ( x ) ≥ 0 , g ( x ) > 0 f(x) \ge 0,g(x)>0 f(x)≥0,g(x)>0, lim x → + ∞ f ( x ) g ( x ) = c \lim_{x \to +\infty}\frac{f(x)}{g(x)}=c x→+∞limg(x)f(x)=c
则
- 0 < c < + ∞ 0<c<+\infty 0<c<+∞ ,两个狗东西同敛态。
- c = 0 c=0 c=0,若 g 收 , 则 f 收 g收,则f收 g收,则f收
- c = + ∞ c=+\infty c=+∞, 则 g 发 散 → f 发 散 则g发散\rightarrow f发散 则g发散→f发散