反常积分(2)

性质3,记住啊!!!!!!!!!!!!!!!!!!!!

∫ a + ∞ ∣ f ( x ) ∣ \int_{a}^{+ \infty}|f(x)| a+f(x)收敛(也就是 ∫ a + ∞ f ( x ) \int_{a}^{+ \infty}f(x) a+f(x)绝对收敛的意思),则
∫ a + ∞ f ( x ) d x \int_{a}^{+ \infty}f(x)dx a+f(x)dx亦收敛哦!
且有
(3) ∣ ∫ a + ∞ f ( x ) ∣ d x ≤ ∫ a + ∞ ∣ f ( x ) ∣ d x |\int_{a}^{+ \infty}f(x)|dx\le \int_{a}^{+ \infty}|f(x)|dx \tag{3} a+f(x)dxa+f(x)dx(3)
一言以蔽之,绝对收敛的无穷积分本身也收敛。

非负函数无穷积分的收敛判别法

定理11.2(比较原则)

f , g f,g f,g定义在 [ a , + ∞ ) [a,+\infty) [a,+),且都非负函数,且满足
f ( x ) ≤ g ( x ) , x ∈ [ a , + ∞ ) f(x) \le g(x),\qquad x \in [a,+\infty) f(x)g(x)x[a,+)
右 边 收 敛 , 则 左 边 也 收 敛 右边收敛,则左边也收敛
左 边 发 散 , 则 右 边 也 发 散 左边发散,则右边也发散

例题1
看看 ∫ 0 + ∞ s i n x 1 + x 2 d x \int_{0}^{+\infty}\frac{sinx}{1+x^2}dx 0+1+x2sinxdx收敛还是发散呢????
在这里插入图片描述

推论1

f ( x ) , g ( x ) f(x),g(x) f(x)g(x)定义在 [ a , + ∞ ) [a,+\infty) [a,+),且 f ( x ) ≥ 0 , g ( x ) > 0 f(x) \ge 0,g(x)>0 f(x)0g(x)>0 lim ⁡ x → + ∞ f ( x ) g ( x ) = c \lim_{x \to +\infty}\frac{f(x)}{g(x)}=c x+limg(x)f(x)=c

  1. 0 &lt; c &lt; + ∞ 0&lt;c&lt;+\infty 0<c<+ ,两个狗东西同敛态。
  2. c = 0 c=0 c=0,若 g 收 , 则 f 收 g收,则f收 gf
  3. c = + ∞ c=+\infty c=+ 则 g 发 散 → f 发 散 则g发散\rightarrow f发散 gf
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

fgh431

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值