视觉Transformer(Vision Transformer)

本文介绍了视觉Transformer的基本架构,包括图像块的分块和嵌入,以及Transformer编码器的使用。接着讨论了多种改进策略,如训练策略优化、patch tokenization、self-attention改进和卷积层的引入,以提升模型性能和训练效率。这些模型适用于图像分类,并可进一步应用于目标检测、图像分割等任务。

视觉Transformer(Vision Transformer)

Vision Transformer.

Transformer是基于自注意力机制(self-attention mechanism)的深度神经网络,该模型在$2017$年$6$月被提出,并逐渐在自然语言处理任务上取得最好的性能。

Transformer最近被扩展到计算机视觉任务上。由于Transformer缺少CNNinductive biases如平移等变性 (Translation equivariance),通常认为Transformer在图像领域需要大量的数据或较强的数据增强才能完成训练。随着结构设计不断精细,也有一些视觉Transformer只依赖小数据集就能取得较好的表现。

本文主要介绍视觉

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

禅与计算机程序设计艺术

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值