作者:禅与计算机程序设计艺术
1.简介
在日常生活中,计算机模型会被部署到各种各样的场景下用于预测、决策等。为了在保证预测精度的同时降低计算成本,减少资源占用,机器学习模型通常都会经过压缩(Compression)处理。其中,基于强化学习(Reinforcement Learning,RL)的方法被广泛应用于模型压缩。本文将以一个具体的例子——神经网络模型的压缩为例,阐述基于强化学习方法对神经网络模型的压缩,并通过相关代码示例来展示如何使用强化学习方法进行模型压缩。
2.基本概念
(1)模型压缩
模型压缩(Model Compression),也称为剪枝(Pruning)或裁剪(Sparsity), 是指通过删除一些冗余或不重要的权重参数,减小模型大小或者模型参数数量,从而达到提升模型性能,减少运算量或者内存占用,同时还可以有效地节省存储空间。模型压缩技术具有很高的实用价值,如在移动端设备上部署模型时,模型大小限制了其可用内存;在超算中心、边缘节点和终端设备等资源受限的环境中运行模型时,模型大小限制了它们的计算能力;在实际生产环境中部署的模型往往由不同子系统组成ÿ