数据预处理(Data Preparation)基础知识总结 The Complete Guide to Data Preparation

数据预处理是数据科学中的关键环节,涉及数据脏数据、重复数据、缺失数据、离群点数据、多重共线性、变量交叉、标准化、标称化、编码转换和拆分目标变量等核心概念。本文通过实例和方法详细介绍了这些处理步骤,旨在帮助读者理解和应用数据预处理技巧,提升数据质量和模型效果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

作者:禅与计算机程序设计艺术

1.简介

数据预处理(Data Preparation)是数据科学中最重要的一环,也是经验丰富的数据科学家所需要掌握的内容。然而,由于初学者往往对数据的结构、规律不熟悉,导致很难将数据转化成可用于机器学习等数据分析任务中的输入。因此,如何清晰地、正确地准备好数据成为一个必不可少的技能。本文将会详细阐述“数据脏数据”(Dirty data)、“重复数据”(Duplicate data)、“缺失数据”(Missing data)、“离群点数据”(Outlier data)、“多重共线性”(Multicollinearity)、“变量交叉”(Variable interaction)、“标准化数据”(Normalization of data)、“标称化数据”(Nominalization of data)、“编码转换”(Encoding conversion)、“拆分目标变量”(Splitting target variable into dependent and independent variables) 等数据预处理过程中的关键概念。
本文通过图表、示意图、公式及代码实例来向读者展示这些处理方法,并对这些处理方法产生的影响进行深入剖析,帮助读者理解这些处理方法背后的原理及应用场景。</

评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI天才研究院

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值