作者:禅与计算机程序设计艺术
1.简介
深度学习在图像、文字等领域取得了极大的成功,但对于生成模型(Generative Adversarial Networks, GAN)来说却是一个全新的领域。它由两个相互对抗的网络组成,一个生成网络G将潜藏于训练数据内部的结构和信息转换为真实世界中的图像或文本样本,另一个判别网络D则负责判断生成的图像或文本样本是否真实存在。由于两者各自独立完成任务,因此两个网络之间存在竞争关系,导致训练不稳定,难以收敛到最优结果。为了解决这一问题,提出了多个GAN可解释性理论,如Fréchet Inception Distance(FID),Kernel Inception Distance(KID),Structural Similarity Index Measure(SSIM)等,这些理论可以帮助我们理解生成模型的生成效果并改进模型,从而达到更好的性能。
然而,如何衡量模型的可解释性以及哪些因素影响着模型的生成过程仍然是一个重要的问题。我们认为,目前很多关于GAN可解释性研究工作都缺乏系统性。它们往往局限于单一的模型结构或手段,并且对模型的能力缺乏深入分析。本文将阐述GAN可解释性的基础理论,介绍不同模型结构对解释性的影响,并讨论GAN可解释性方法的一些最新进展。最后,本文将基于图表、数学