作者:禅与计算机程序设计艺术
Deep Reinforcement Learning: PPO vs DQN
1.简介
在人工智能领域,大规模并行计算(如:GPU)成为支撑强化学习系统快速演进、实现高度抽象决策能力的关键技术。此外,还出现了基于神经网络的强化学习方法——DQN(Deep Q Network)及其变体(如:Double DQN),这些模型都应用了深度学习的一些最新成果来解决传统强化学习面临的问题。近年来,研究人员提出了新的深度强化学习方法——Proximal Policy Optimization (PPO),它可以有效克服DQN存在的很多不足。由于这两种方法都是基于神经网络的强化学习方法,所以文章将通过对比分析PPO与DQN两个方法的设计理念、机制、算法流程等方面,从宏观角度探讨这两者之间差异与联系。最后,文章还将结合实际场景,分析PPO与DQN的优缺点以及何时应该选择哪种方法。希望读者能够从本文受益。
2.基本概念术语说明
2.1 强化学习简介
强化学习(Reinforcement Learning,RL)是指一个agent(通常是一个智能体或一个机器人&#x