Reinforcement Learning from Scratch: The World’s Simple

本文介绍了Q-learning的基本概念,如状态空间、动作空间、环境模型、回报函数和策略,并给出了一个简单的Q-learning算法实现示例,以玩俄罗斯方块游戏为例。通过迭代学习,Q-learning寻找最优策略解决问题,适用于复杂问题的解决。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

作者:禅与计算机程序设计艺术

1.简介

Q-learning(Q-Learner) 是一种基于值函数的强化学习方法,由Watkins、Russell和Barto三人于2012年发明出来。简单来说,Q-learning就是训练一个机器人在一个环境中学习如何更好地执行任务。也就是说,它通过不断试错,试图找到最佳的动作策略,从而实现对环境的自动控制。它的算法是贪心法,即通过选择那些使得长期收益最大化的动作,从而逐步优化策略。如今,许多人都把Q-learning作为强化学习的一种应用方法。比如,AlphaGo用Q-learning训练出了世界上最先进的围棋AI,包括AlphaZero等改进版算法;李沐的深度强化学习算法Deep Q Network(DQN)则是其中著名的代表。本文将介绍最基础的Q-learning算法——即最简单的Q-table学习算法,并给出一个简单的示例,展示如何利用此算法玩俄罗斯方块游戏。

2.基本概念

首先,需要介绍一些基本概念,才能理解下面的算法。

2.1 状态空间和动作空间

Q-learning算法的输入是当前状态S,输出是下一步所采取的动作A。因此,我们首先要定义状态空间和动作空间。状态空间通常是一个有限的,且易于枚举的集合,表示机器人可能处于的所有状态。一般来

评论 14
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI天才研究院

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值