作者:禅与计算机程序设计艺术
1.简介
在机器学习中,模型剪枝(pruning)是指通过对神经网络中的权重进行裁剪(去除)或者修剪(缩减),从而减少神经网络的计算量、降低模型大小、提高推理速度等,从而取得较好的效果。然而,由于模型剪枝技术复杂、优化过程耗时,并不能保证每一个权重都被完全移除,因此,如何有效地进行模型剪枝,进而达到压缩率的提升,一直是研究人员的热点问题。在本文中,我们将基于论文《Learning Pruning Criteria via Cost-Aware Model Pruning》,提出一种cost-aware model pruning方法,该方法能够自动地找到剪枝最优的权重配置,并通过计算整个模型的推理时间来评估模型剪枝方案的好坏。具体而言,我们希望能够用极小代价的代价函数来衡量剪枝方案的好坏,而不是靠逐层精度损失来评估。此外,为了获得更加鲁棒的剪枝效果,我们还会考虑权重共享的情况,即不同层的相同权重是否可以同时剪掉。综上,我们的目标是设计一个新颖的、自适应的、成本感知的模型剪枝框架,使得模型剪枝技术可以充分利用硬件性能的优势,从而带来显著的压缩率提升。
2.基本概念与术语
本节首先介绍一些模型剪枝的基本概念与术语。