如何实现模型剪枝及其压缩率提升

本文探讨了模型剪枝技术,旨在通过权重裁剪降低计算量和模型大小,提高推理速度。介绍了成本感知模型剪枝方法,以评估剪枝方案对模型性能的影响,并考虑权重共享情况。详细阐述了全连接层剪枝策略,包括修剪和裁剪策略,并给出了具体操作步骤,包括环境配置、数据准备、模型训练和剪枝。最后,总结了模型剪枝的效果并展望未来工作。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

作者:禅与计算机程序设计艺术

1.简介

在机器学习中,模型剪枝(pruning)是指通过对神经网络中的权重进行裁剪(去除)或者修剪(缩减),从而减少神经网络的计算量、降低模型大小、提高推理速度等,从而取得较好的效果。然而,由于模型剪枝技术复杂、优化过程耗时,并不能保证每一个权重都被完全移除,因此,如何有效地进行模型剪枝,进而达到压缩率的提升,一直是研究人员的热点问题。在本文中,我们将基于论文《Learning Pruning Criteria via Cost-Aware Model Pruning》,提出一种cost-aware model pruning方法,该方法能够自动地找到剪枝最优的权重配置,并通过计算整个模型的推理时间来评估模型剪枝方案的好坏。具体而言,我们希望能够用极小代价的代价函数来衡量剪枝方案的好坏,而不是靠逐层精度损失来评估。此外,为了获得更加鲁棒的剪枝效果,我们还会考虑权重共享的情况,即不同层的相同权重是否可以同时剪掉。综上,我们的目标是设计一个新颖的、自适应的、成本感知的模型剪枝框架,使得模型剪枝技术可以充分利用硬件性能的优势,从而带来显著的压缩率提升。

2.基本概念与术语

本节首先介绍一些模型剪枝的基本概念与术语。

评论 17
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI天才研究院

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值