作者:禅与计算机程序设计艺术
1.背景介绍
在人工智能领域里,近年来火热的研究热潮之一就是生成对抗网络GAN(Generative Adversarial Networks)。GAN通过训练两个神经网络——生成器和判别器,使得生成器生成新的数据样本,并且判别器能够判断这些数据是否是真实存在的原始数据。与传统机器学习方法不同的是,GAN可以让生成器自己生成新的图像、音频或文本等多种形式的样本。这样就能更好的解决计算机视觉、自然语言处理等领域中遇到的模式识别和生成问题。本文将从原理层面出发,全面剖析GAN技术的基本原理和核心算法。希望能够帮助广大的AI技术从业者及学生快速了解和掌握GAN技术,并应用到实际生产环境中。
2.核心概念与联系
GAN概述
GAN(Generative Adversarial Networks)由DCGAN(Deep Convolutional Generative Adversarial Network),WGAN(Wasserstein GAN),WGAN-GP(Wasserstein Gradient Penalty)等变体构成。其核心思想是通过构造一个由生成网络生成假图像,并与真图像进行比较,来最大化判别器网络的能力,同时最小化生成网络的能力。生成网络是训练生成假图像的网络