Transformer在自动驾驶中的应用
1. 背景介绍
自动驾驶汽车是当前人工智能和机器学习领域的热点研究方向之一。其核心技术之一就是基于深度学习的感知和决策系统。在感知系统中,目标检测和跟踪、语义分割、场景理解等计算机视觉任务至关重要。而在决策系统中,规划和控制模块需要对当前状态进行建模并做出相应的决策。
近年来,Transformer模型在自然语言处理领域取得了突破性进展,并逐步被应用到计算机视觉等其他领域。相比于传统的卷积神经网络和循环神经网络,Transformer模型具有建模长距离依赖关系的能力,可以更好地捕捉输入序列中的全局信息。这些特性也使得Transformer在自动驾驶的感知和决策任务中展现出了巨大的潜力。
2. 核心概念与联系
2.1 Transformer模型
Transformer是一种基于注意力机制的序列到序列学习模型,最初被提出用于机器翻译任务。与传统的基于循环神经网络(RNN)或卷积神经网络(CNN)的模型不同,Transformer完全依赖注意力机制来捕捉序列中的全局依赖关系,不需要使用任何循环或卷积结构。
Transformer的核心组件包括:
- Self-Attenti