1. 背景介绍
1.1 强化学习概述
强化学习 (Reinforcement Learning, RL) 作为机器学习的一个重要分支,专注于智能体 (Agent) 通过与环境交互学习并优化其行为策略。智能体通过试错的方式,从环境中获得奖励或惩罚信号,并根据这些反馈不断调整策略,以实现长期累积奖励最大化的目标。
1.2 稳定性与收敛性问题
强化学习算法的成功应用依赖于其稳定性和收敛性。稳定性指的是算法在训练过程中不会出现剧烈震荡或发散的现象,而收敛性则指算法最终能够找到一个最优或近似最优的策略。然而,由于强化学习的复杂性,例如环境的随机性、奖励的延迟性等因素,导致稳定性和收敛性问题成为 RL 算法设计和应用中的重要挑战。
2. 核心概念与联系
2.1 马尔可夫决策过程 (MDP)
马尔可夫决策过程 (Markov Decision Process, MDP) 是强化学习问题的数学模型,它描述了智能体与环境之间的交互过程。MDP 由以下几个要素组成:
- 状态空间 (State Space): 表示智能体可能处于的所有状态的集合。
- 动作空间 (Action Space): 表示智能体可以执行的所有动作的集合。