深度学习原理与实战:激活函数的选择
1. 背景介绍
1.1 什么是激活函数
在深度学习中,激活函数扮演着至关重要的角色。它是一种数学函数,用于引入非线性特征,使神经网络能够学习复杂的映射关系。在神经网络的每个神经元中,输入信号经过加权求和后,会传递给激活函数进行非线性转换,产生输出信号。
激活函数的作用是决定神经元的输出是否应该被"激活"。如果输入信号足够大,激活函数会输出一个较大的值,表示该神经元被激活;反之,如果输入信号较小,激活函数会输出一个较小的值,表示该神经元未被激活。
1.2 激活函数的重要性
选择合适的激活函数对于神经网络的性能至关重要。不同的激活函数具有不同的特性,可以影响神经网络的表达能力、收敛速度和泛化能力。合适的激活函数可以加速训练过程,提高模型的准确性,并防止梯度消失或梯度爆炸等问题。
2. 核心概念与联系
2.1 非线性
神经网络之所以强大,是因为它们能够学习复杂的非线性映射关系。然而,如果没有激活函数引入非线性,神经网络将只能学习线性函数,这严重限制了它们的表达能力。
激活函数通过对输入信号进行非线性转换,使得神经网络能够逼近任意连续函数。这种非线性特性使得神经网络能够捕捉输入数据中的复杂模式和特征,从而提高模型的性能。
2.2 可微性
为了使用基于梯度的优