1. 背景介绍
1.1 计算机视觉的挑战:数据依赖性
近年来,计算机视觉领域取得了显著的进展,特别是在图像分类、目标检测和图像分割等任务上。这些进步很大程度上归功于深度学习模型的出现以及大规模标注数据集的可用性。然而,这些模型的性能严重依赖于训练数据的质量和数量。当模型被应用于与训练数据分布不同的新领域时,其性能往往会显著下降。这就是域偏移(domain shift)问题,是计算机视觉领域的一个重要挑战。
1.2 域自适应:弥合领域鸿沟
为了解决域偏移问题,域自适应(Domain Adaptation)技术应运而生。域自适应旨在通过调整模型或数据,使得模型能够在目标领域(目标域)上取得良好的性能,而无需大量的目标域标注数据。这对于许多实际应用场景至关重要,例如:
- 医疗影像分析: 将模型从一个医院的数据集迁移到另一个医院的数据集,以提高诊断的准确性和效率。
- 自动驾驶: 将模型从模拟环境迁移到真实世界,以提高自动驾驶系统的安全性。
- 人脸识别: 将模型从一个种族的人脸数据集迁移到另一个种族的人脸数据集,以提