1. 背景介绍
1.1 人工智能的演进与强化学习的崛起
人工智能 (AI) 的发展经历了漫长的历程,从早期的符号主义 AI 到如今的连接主义 AI,每一次技术浪潮都推动着 AI 迈向新的高度。近年来,深度学习的兴起为 AI 带来了革命性的突破,并在计算机视觉、自然语言处理等领域取得了显著成果。与此同时,强化学习 (Reinforcement Learning, RL) 也逐渐走入人们的视野,成为 AI 领域备受关注的研究方向。
强化学习是一种通过与环境交互来学习最佳行为策略的机器学习方法。与传统的监督学习和无监督学习不同,强化学习不需要预先提供标记数据,而是通过试错的方式,根据环境的反馈来调整自身的策略,最终实现目标。
1.2 深度强化学习:深度学习与强化学习的完美结合
深度强化学习 (Deep Reinforcement Learning, DRL) 则是将深度学习与强化学习相结合的产物。它利用深度神经网络强大的特征提取能力,来解决强化学习中状态空间巨大、动作空间复杂等问题,从而提升强化学习算法的效率和性能。
DRL 的出现,使得 AI 在游戏、机器人控制、自动驾驶等领域取得了突破性进展。例如,DeepMind 开发的 AlphaGo 程序,在围棋比赛中战胜了世界冠军,标志着 DRL