Transformer大模型实战 ClinicalBERT模型
1.背景介绍
在过去的几年中,Transformer模型在自然语言处理(NLP)领域取得了巨大的成功。自从Vaswani等人于2017年提出Transformer架构以来,基于Transformer的模型如BERT、GPT-3等已经在多个NLP任务中达到了前所未有的性能。特别是在医疗领域,处理和理解临床文本数据具有重要的实际意义。ClinicalBERT模型正是基于BERT的变体,专门用于处理和理解临床文本数据。
ClinicalBERT的出现为医疗文本数据的处理带来了革命性的变化。它不仅能够理解复杂的医学术语,还能在电子健康记录(EHR)中提取有价值的信息,从而辅助医生进行诊断和治疗决策。
2.核心概念与联系
2.1 Transformer架构
Transformer架构是由编码器和解码器组成的双向模型。编码器负责将输入序列转换为一系列隐藏状态,解码器则将这些隐藏状态转换为输出序列。其核心组件是自注意力机制(Self-Attention),能够捕捉序列中不同位置的依赖关系。
2.2 BERT模型
BERT(Bidirectional Encoder Repr