从初代GPT到ChatGPT,再到GPT-4的进化史
1.背景介绍
自20世纪60年代以来,人工智能(AI)一直是科技领域的热门话题。在过去的几十年里,AI技术取得了长足的进步,尤其是在自然语言处理(NLP)领域。NLP是AI的一个重要分支,旨在使计算机能够理解和生成人类语言。
2018年,OpenAI发布了第一代生成式预训练转换器(GPT),这是一种基于transformer的语言模型,能够生成看似人类写作的文本。GPT的出现标志着NLP领域的一个重大突破,为后续的GPT模型奠定了基础。
2.核心概念与联系
GPT系列模型的核心概念是自回归语言模型(Autoregressive Language Model),它基于给定的文本序列,预测下一个词的概率分布。这种方法允许模型生成连贯、流畅的文本输出。
GPT模型采用transformer架构,利用自注意力(Self-Attention)机制来捕捉输入序列中的长程依赖关系。这种架构使得模型能够更好地理解和生成长篇文本。
GPT模型通过在大型语料库上进行预训练,学习到丰富的语言知识和上下文信息。预训练后,模型可以针对特定任务进行微调(Fine-tuning),以适应不同的应用场景。
graph TD
A[语料库] -->|预训练| B(GPT模型)
B --> |微调| C1(文本生成)
B --> |微调| C2(问答系统)
B