从零开始大模型开发与微调:反馈神经网络的原理与公式推导
作者:禅与计算机程序设计艺术 / Zen and the Art of Computer Programming
1. 背景介绍
1.1 问题的由来
随着深度学习的兴起,大模型(Large Models)在各个领域都取得了显著的成果。大模型能够处理复杂的数据,并从中学习到丰富的特征和模式。然而,大模型的开发与微调是一个复杂且充满挑战的过程。如何有效地训练和优化大模型,使其在各个任务上都能表现出色,是当前人工智能领域亟待解决的问题。
1.2 研究现状
目前,大模型的研究主要集中在以下几个方面:
- 预训练技术:通过在大规模数据集上预训练模型,使其具备一定的通用性,然后针对特定任务进行微调。
- 模型结构优化:设计更有效的神经网络结构,提高模型的性能和泛化能力。
- 训练算法优化:改进训练算法,提高训练速度和模型稳定性。
- 模型解释性与可控性:提高模型的可解释性和可控性,使其决策过程更加透明。 <