从零开始大模型开发与微调:反馈神经网络的原理与公式推导

从零开始大模型开发与微调:反馈神经网络的原理与公式推导

作者:禅与计算机程序设计艺术 / Zen and the Art of Computer Programming

1. 背景介绍

1.1 问题的由来

随着深度学习的兴起,大模型(Large Models)在各个领域都取得了显著的成果。大模型能够处理复杂的数据,并从中学习到丰富的特征和模式。然而,大模型的开发与微调是一个复杂且充满挑战的过程。如何有效地训练和优化大模型,使其在各个任务上都能表现出色,是当前人工智能领域亟待解决的问题。

1.2 研究现状

目前,大模型的研究主要集中在以下几个方面:

  1. 预训练技术:通过在大规模数据集上预训练模型,使其具备一定的通用性,然后针对特定任务进行微调。
  2. 模型结构优化:设计更有效的神经网络结构,提高模型的性能和泛化能力。
  3. 训练算法优化:改进训练算法,提高训练速度和模型稳定性。
  4. 模型解释性与可控性:提高模型的可解释性和可控性,使其决策过程更加透明。
  5. <
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI天才研究院

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值