AI系统Spark原理与代码实战案例讲解
1.背景介绍
1.1 什么是Spark?
Apache Spark是一种开源的、快速的、通用的用于大规模数据处理的集群计算系统。它最初由加州大学伯克利分校的AMPLab所开发,后被捐赠给Apache软件基金会。Spark基于内存计算,能够显著提高大数据处理的效率。
Spark不仅支持批处理,还支持流式计算,并且支持SQL查询、机器学习、图计算等多种数据分析方式。它可以运行于Hadoop集群之上,也可以独立运行。Spark具有如下主要特点:
- 速度快:Spark基于内存计算,运行速度比Hadoop的MapReduce要快100倍以上。
- 易用:Spark支持多种编程语言(Scala、Java、Python、R),并且提供了丰富的高级API,大大简化了编程复杂度。
- 通用:Spark不仅支持批处理,还支持流计算、机器学习、图计算等多种计算模型。
- 容错:Spark的RDD(Resilient Distributed Dataset)是一种分布式内存数据集,具有容错能力。
1.2 Spark生态圈
Spark拥有庞大的生态圈,包括多个紧密集成的组件,用于满足不同的数据处理需求:
- Spark Core:实现了Spar