基于生成对抗网络的艺术品仿真与风格迁移技术
关键词:生成对抗网络,艺术品仿真,风格迁移,深度学习,图像处理,计算机视觉
1. 背景介绍
生成对抗网络(Generative Adversarial Networks,简称GANs)自2014年由Ian Goodfellow等人提出以来,迅速成为深度学习领域的一个重要研究方向。GANs通过两个神经网络——生成器(Generator)和判别器(Discriminator)之间的对抗训练,能够生成逼真的图像、音频和文本等数据。近年来,GANs在艺术品仿真与风格迁移方面展现出了巨大的潜力,能够将一幅图像的风格迁移到另一幅图像上,甚至生成全新的艺术作品。
2. 核心概念与联系
2.1 生成对抗网络的基本原理
生成对抗网络由两个主要部分组成:生成器和判别器。生成器的目标是生成逼真的图像,而判别器的目标是区分真实图像和生成图像。通过不断的对抗训