AI与金融学交叉原理与代码实战案例讲解

1. 背景介绍

1.1 金融学的量化革命

金融学,作为一门研究资金的融通、支付、证券发行与交易、风险管理以及金融市场运行规律的学科,在过去几十年里经历了一场量化革命。随着计算能力的提升和数据可用性的提高,数学、统计学和计算机科学的方法被越来越多地应用于金融领域,催生了诸如量化投资、风险管理、算法交易等新兴领域。

1.2 人工智能的崛起

与此同时,人工智能(AI)作为计算机科学的一个分支,也取得了长足的进步。机器学习、深度学习等技术的出现,使得计算机能够从海量数据中学习规律、识别模式,并进行预测和决策。

1.3 AI与金融学的交叉融合

AI与金融学的交叉融合,为金融领域带来了前所未有的机遇和挑战。一方面,AI可以帮助金融机构提高效率、降低成本、增强风险控制能力;另一方面,AI也带来了新的伦理和社会问题,需要我们认真思考和应对。

2. 核心概念与联系

2.1 金融时间序列

金融时间序列是指按照时间顺序排列的金融数据,例如股票价格、利率、汇率等。金融时间序列分析是金融学的重要研究方法,其目的是通过对历史数据的分析,预测未来金融市场的走势。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI天才研究院

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值