1. 背景介绍
1.1 金融学的量化革命
金融学,作为一门研究资金的融通、支付、证券发行与交易、风险管理以及金融市场运行规律的学科,在过去几十年里经历了一场量化革命。随着计算能力的提升和数据可用性的提高,数学、统计学和计算机科学的方法被越来越多地应用于金融领域,催生了诸如量化投资、风险管理、算法交易等新兴领域。
1.2 人工智能的崛起
与此同时,人工智能(AI)作为计算机科学的一个分支,也取得了长足的进步。机器学习、深度学习等技术的出现,使得计算机能够从海量数据中学习规律、识别模式,并进行预测和决策。
1.3 AI与金融学的交叉融合
AI与金融学的交叉融合,为金融领域带来了前所未有的机遇和挑战。一方面,AI可以帮助金融机构提高效率、降低成本、增强风险控制能力;另一方面,AI也带来了新的伦理和社会问题,需要我们认真思考和应对。
2. 核心概念与联系
2.1 金融时间序列
金融时间序列是指按照时间顺序排列的金融数据,例如股票价格、利率、汇率等。金融时间序列分析是金融学的重要研究方法,其目的是通过对历史数据的分析,预测未来金融市场的走势。