1. 背景介绍
1.1 大数据时代下的隐私困境
近年来,随着互联网和移动设备的普及,全球数据量呈爆炸式增长。海量的数据蕴藏着巨大的商业价值,但同时也带来了前所未有的隐私安全挑战。传统的机器学习方法需要将数据集中存储,这使得用户数据面临着泄露、滥用等风险。
1.2 联邦学习的崛起
为了解决数据孤岛和隐私安全问题,联邦学习应运而生。联邦学习是一种新型的分布式机器学习框架,它允许在不共享原始数据的情况下,协同训练一个共享的全局模型。
1.3 隐私计算技术
联邦学习的实现离不开隐私计算技术的支持。隐私计算技术是指在保护数据隐私的前提下,实现数据价值的挖掘和利用。常见的隐私计算技术包括:
- 差分隐私(Differential Privacy): 通过向数据中添加噪声来保护用户隐私。
- 同态加密(Homomorphic Encryption): 允许在加密数据上进行计算,而无需解密。
- 安全多方计算(Secure Multi-Party Computation): 允许多个参与方在不泄露各自数据的情况下,共同计算一个函数。