联邦学习与隐私计算原理与代码实战案例讲解

1. 背景介绍

1.1 大数据时代下的隐私困境

近年来,随着互联网和移动设备的普及,全球数据量呈爆炸式增长。海量的数据蕴藏着巨大的商业价值,但同时也带来了前所未有的隐私安全挑战。传统的机器学习方法需要将数据集中存储,这使得用户数据面临着泄露、滥用等风险。

1.2 联邦学习的崛起

为了解决数据孤岛和隐私安全问题,联邦学习应运而生。联邦学习是一种新型的分布式机器学习框架,它允许在不共享原始数据的情况下,协同训练一个共享的全局模型。

1.3 隐私计算技术

联邦学习的实现离不开隐私计算技术的支持。隐私计算技术是指在保护数据隐私的前提下,实现数据价值的挖掘和利用。常见的隐私计算技术包括:

  • 差分隐私(Differential Privacy): 通过向数据中添加噪声来保护用户隐私。
  • 同态加密(Homomorphic Encryption): 允许在加密数据上进行计算,而无需解密。
  • 安全多方计算(Secure Multi-Party Computation): 允许多个参与方在不泄露各自数据的情况下,共同计算一个函数。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI天才研究院

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值