AIGC在智慧零售中的应用:个性化推荐内容
关键词:AIGC、智慧零售、个性化推荐、深度学习、自然语言处理、推荐算法、用户画像
摘要:本文深入探讨人工智能生成内容(AIGC)在智慧零售领域的核心应用——个性化推荐内容。通过解析AIGC技术架构与推荐系统的融合逻辑,详细阐述基于深度学习的生成式推荐算法原理,结合具体代码实现和数学模型分析,展示如何利用AIGC生成精准的商品推荐文案、个性化营销内容和智能客服应答。文中包含完整的项目实战流程、实际应用场景分析以及前沿工具资源推荐,最终总结技术发展趋势与挑战,为零售行业数字化转型提供理论与实践指导。
1. 背景介绍
1.1 目的和范围
随着零售行业从“以商品为中心”向“以用户为中心”转型,个性化推荐成为提升用户体验和商业效率的核心技术。传统推荐系统依赖历史数据建模,但在内容生成环节存在模板化、缺乏情感共鸣等问题。AIGC(Artificial Intelligence Generated Content)技术通过生成式模型(如GPT、扩散模型),能够根据用户画像动态生成定制化推荐内容,包括商品描述、营销文案、客服对话等,实现“千人千面”的精准触达。