《暗时间》第四章 跟波利亚学解题 随笔摘要

一 启发式思维:(联想)过没有桥的河,联想到以前自己走过一颗倒在河上的树而将问题从如何过河转化为如何让树躺再河上

启发式思考方法:
1.时刻不忘未知量,时刻记住你到底像要求什么,问题是什么
2.用特例启发思考
3.反过来推导 例子:
       (1.100根火柴两个人轮流取,每人每次只能取1~7根,拿到最后一根火柴赢,有必胜策略吗?


解:由结论可知拿到倒数第八根的人必输,那么我们就让对手拿到第八根就好,出去这八根还有92根,让对手一定拿到倒数第八根,我们可知两人一回合最少拿的根数是8,也就是说我们可以将每一回合拿走的根数控制在八根(其他的都不行),92%8=4,余下四,那就先手拿走四根,就能让每回合拿走八根后,对手拿到倒数第八根.
       (2.两堆橘子,各为m和n个,两人轮流拿,拿的时候你只能选择某一堆在里面拿(即不能跨堆拿),你可以拿1~这堆里面所有剩下的橘子,谁拿到最后一个橘子谁赢。这个题目怎样能获胜?


解:我们考虑极端情况将其中一堆拿到只剩一个,对手此时也将一堆拿到只剩一个,此时再拿,必输.如果我们最后拿地只剩两个,对手也是如此,一番推理,也是必输,同理我拿走只剩三个,对手也是如此,这样也是必输,得出结论,谁先打破两个数量的平衡谁就输了,此时再看题目就可以发现一开始先手的话,就可以选择拿走多的一堆一定数量去保持两堆数量的平衡.
4.试错
        (1 50个白球,50个黑球,两个箱子,如何放,从中随机选一个箱子后随机拿到获取白球的机率更大?


解:其中一个放一个白球,剩下的球放在另外的箱子里,概率接近%75

5调整题目的条件
A国由1000000个岛组成,岛与岛之间只能用船作为交通工具,有些岛之间有船往来,有些岛没有,从任意岛都能到达另一任何岛,当然可能需要换船.现在有一个警察要追捕一个逃犯,开始时他们在不同的岛上,警察和逃犯都是每天最多乘一次船,但这个逃犯还有点迷信,每个月的13日不乘船,警察则不迷信.警察每天乘船前都知道逃犯昨天在哪个岛上,但不知道他今天会去哪个岛。请证明,警察一定可以抓到逃犯(即可以到达同一个岛)。


解:将逃犯每天要乘船条件删掉,发现一定会找到逃犯,所以结论是每次去逃犯昨天在的岛就好

6求解一个类似的题目
7列出所有可能跟问题有关的定理或性质
8考查反面,考查其他所有情况
100个人比赛,要决出冠军至少需要赛多少场?

我感觉是一场哈哈哈哈哈哈哈应为题目没说明白,比如马拉松100个人跑,只跑一场就有冠军了
9将问题泛化,并求解这个泛化后的问题
 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值