时间限制: 1 Sec 内存限制: 128 MB
[提交] [状态]
题目描述
胖虎在SXYZ比较自闭,于是他自己就制造了一个序列,在这个序列里的数全部由正整数构成。
你别认为这个序列很神奇–其实就是1,2,3,4,…,n,其中n是给定的。胖虎满意地去上厕所时,小C,过来机惨胖虎,他准备将胖虎的序列全部变为0,可就在这时,胖虎突然回来了,小C的计划破灭了…吗?这时机智小C对胖虎说:我可以每次从这个序列中选取一些数,然后将选取的这些数减去一个相同的正整数。然后经过有限次这样的操作后(每次操作减去的正整数可以不同),这个序列就可以全变成0。
输入
一个正整数n(1≤n≤10^9)
输出
最少操作次数
样例输入 Copy
【样例1】
2
【样例2】
3
样例输出 Copy
【样例1】
2
【样例2】
2
提示
样例1中序列为1,2–①我们第一次选取1,2,将这两个数都减去1,得到0,1–②,再在序列②中选取1,减去1,得到序列0,0操作次数为2
样例2序列为1,2,3–①我们第一次选取2,3,将这两个数都减去2,得到1,0,1–②,再在序列②中选取1,1,减去1,得到序列0,0,0操作次数为2
这个题有点类似于二分的方法,第一次让后半部分减掉一部分,然后在左半部分重复类似的操作,直到只剩下0和1为止。不好表达,直接看例子:
n=6:
1 2 3 4 5 6
1~3,4~6减3:->1 2 3 1 2 3
1,2~3减2:->1 0 1 1 0 1
ans=1+1=2
n=9:
1 2 3 4 5 6 7 8 9
1~4,5~9减5:->1 2 3 4 0 1 2 3 4
1~2,3~4减3:->1 2 0 1 0 1 2 0 1
2减2:->1 0 0 1 0 1 0 1 1
ans=1+3=4
n=14
1 2 3 4 5 6 7 8 9 10 11 12 13 14
1~7,8~14减7:->1 2 3 4 5 6 7 1 2 3 4 5 6 7
1~3,4~7减4:->1 2 3 0 1 2 3 1 2 3 0 1 2 3
1,2~3减2:->1 0 1 0 1 0 1 1 0 1 0 1 0 1
ans=1+3=4
这个题可能不难,但是每次处理一半的思想方法值得学习。最有意思的是在本地编译器上输入8应该输出4,实际输出3,提交后通过了。
#include<stdio.h>
#include<math.h>
int main()
{
double n;
scanf("%lf",&n);
printf("%d",(int)(log(1.0*n)/log(2.0)+1));
return 0;
}