假设栈ADT的数据元素为整数,栈ADT的实现采用顺序存储结构。现要用栈来辅助完成任意非负十进制整数到Base(Base不大于35)进制的转换。部分代码已经给出,请补充完善栈溢出处理函数和主函数。 注意:只提交需要补充的函数,其他代码不允许自己重写和修改。
栈溢出处理函数overflowProcess:当栈满时,将栈的空间在原来基础上扩大1倍。
主函数: 输入一个非负十进制整数n及要转换的进制Base,输出其转换后的进制形式,以及长度。输出格式如下:
( $ … $ )10=(#…#)Base
Length=转换进制后数的位数
其中$ …$是输入的十进制数n,#…#是转换得到的Base进制数,如果转换后位码多于1位,则用大写字母A,B,…等表示,10-A, 11-B,…
例如,输入
1024 2
输出
(1024)10=(10000000000)2
Length=11
再如,输入
25 30
输出
(25)10=(P)30
Length=1
预置代码如下:
#include < iostream>
using namespace std;
#include <stdio.h>
#include <stdlib.h>
typedef int ElemType;
class SeqStack { //顺序栈类定义
private:
ElemType *elements; //数组存放栈元素
int top; //栈顶指示器
int maxSize; //栈最大容量
void overflowProcess(); //栈的溢出处理
public:
SeqStack(int sz); //构造函数
~SeqStack() { delete []elements; }; //析构函数
void Push(ElemType x); //进栈
int Pop(ElemType &x); //出栈
int IsEmpty() const { return top == -1; }
int IsFull() const { return top == maxSize-1; }
int GetSize() const {return top+1;} }; SeqStack::SeqStack(int sz) { elements=new ElemType[sz]; //申请连续空间
if(elements==NULL) {cout<<“空间申请错误!”<<endl;exit(1);}
else { top=-1; //栈顶指示器指向栈底
maxSize=sz; //栈的最大空间
}; };
补充overflowProcess() 函数
void SeqStack::Push(ElemType x) { //若栈满,则溢出处理,将元素x插入该栈栈顶
if (IsFull() == 1) overflowProcess(); //栈满
elements[++top] = x; //栈顶指针先加1, 再元素进栈 }; int SeqStack::Pop(ElemType & x) {//若栈不空,函数退出栈顶元素并将栈顶元素的值赋给x,
//返回true,否则返回false if (IsEmpty() == 1) return 0;
x = elements[top–]; //先取元素,栈顶指针退1
return 1; //退栈成功 };
补充main()函数
void SeqStack::overflowProcess()
{
ElemType *a=new ElemType[2*maxSize];
int i;
for(i=0;i<=top;i++)
{
a[i]=elements[i];
}
maxSize*=2;
delete []elements;
elements=a;
}
int main()
{
int n,base,t,len=0;
SeqStack num(100);
cin>>n>>base;
if(n==0)
{
cout<<"(0)10=(0)"<<base<<endl;
cout<<"Length=1"<<endl;
}
else
{
cout<<"("<<n<<")10=(";
while(n)
{
num.Push(n%base);
n=n/base;
}
while(!num.IsEmpty())
{
if(num.Pop(t)==1)
{
if(t>=0&&t<=9)cout<<t;
else cout<<(char)(t-10+'A');
len++;
}
}
cout<<")"<<base<<endl;
cout<<"Length="<<len;
}
return 0;
}