给定一个非负整数 num。对于 0 ≤ i ≤ num 范围中的每个数字 i ,计算其二进制数中的 1 的数目并将它们作为数组返回。
示例 1:
输入: 2
输出: [0,1,1]
示例 2:
输入: 5
输出: [0,1,1,2,1,2]
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/counting-bits
解法一:动态规划
用ans[i]
表示数i中1的数目,i可以看成由i/2左移一位得到:当i为奇数时,左移一位补1;当i为偶数时,左移一位补0。由此得到状态转移方程:ans[i]=ans[i/2]+(i&1)
二进制数 | 十进制数 | 含1的个数 |
---|---|---|
0 | 0 | 0 |
1 | 1 | 1 |
10 | 2 | 1 |
11 | 3 | 2 |
100 | 4 | 1 |
101 | 5 | 2 |
110 | 6 | 2 |
111 | 7 | 3 |
1000 | 8 | 1 |
1001 | 9 | 2 |
1010 | 10 | 2 |
1011 | 11 | 3 |
1100 | 12 | 2 |
…… | …… | …… |
class Solution {
public:
vector<int> countBits(int num) {
vector<int>ans(num+1,0);
for(int i=1;i<=num;i++){
ans[i]=ans[i/2]+(i&1);
}
return ans;
}
};
解法二:__builtin_popcount()函数
__builtin_popcount(int i)函数用于计算32位二进制数中1的个数。
class Solution {
public:
vector<int> countBits(int num) {
vector<int>ans;
for(int i=0;i<=num;i++){
ans.push_back(__builtin_popcount(i));
}
return ans;
}
};
解法三:n&(n-1)位运算
n&(n-1)的作用是将最右边的1变为0,执行次数恰好是n中1的数目。
(n&(n-1)还可以用于判断n是否是2的整数次幂,n&(n-1)等于0,表明n是2的整数次幂)
class Solution {
public:
vector<int> countBits(int num) {
vector<int>ans;
for(int i=0;i<=num;i++){
int cnt=0;
int m=i;
while(m){
m=m&(m-1);
cnt++;
}
ans.push_back(cnt);
}
return ans;
}
};