来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/palindromic-substrings
给定一个字符串,你的任务是计算这个字符串中有多少个回文子串。
具有不同开始位置或结束位置的子串,即使是由相同的字符组成,也会被视作不同的子串。
示例 1:
输入:“abc”
输出:3
解释:三个回文子串: “a”, “b”, “c”
示例 2:
输入:“aaa”
输出:6
解释:6个回文子串: “a”, “a”, “a”, “aa”, “aa”, “aaa”
提示:
输入的字符串长度不会超过 1000 。
解决方案一:动态规划
用bool型的二维数组dp[j][i]
表示从第j个位置到第i个位置的字符串是否为回文子串,显然只有一个字符的字符串一定是回文子串。起始位置为j、终止位置为i的字符串长度为i-j+1,对于子串长度为1和2的情况无法用状态转移方程表示,只能特殊处理,即当j == i时dp[j][i]
为true,j + 1 == i时dp[j][i]
根据s[j]与s[i]的相等与否确定true or false。其余情况下,如果[j,i]范围内的字符串是回文串,则[j+1,i-1]范围内的字符串也是回文串,并且s[ j ] == s[ i ]。最后判断dp[j][i]
是否为真,如果为真,表明 [ j , i ]是回文串。
class Solution {
public:
bool **dp;
int countSubstrings(string s) {
int len=s.length();
dp=new bool*[len+5];
for(int i=0;i<=len;i++){
dp[i]=new bool[len+5];
}
int cnt=0;
for(int i=0;i<=len-1;i++){
for(int j=0;j<=i;j++){
if(i==j){//只有一个字符
dp[j][i]=true;
}
else if(j+1==i){//只有两个字符
if(s[i]==s[j]){//相邻两个字符相等
dp[j][i]=true;
}
else{//相邻两个字符不等
dp[j][i]=false;
}
}
else{//规模较大的子问题由规模较小的子问题决定,如果较小子问题不是回文串,则较大子问题一定不是回文串
dp[j][i]=dp[j+1][i-1]&&(s[i]==s[j]);
}
if(dp[j][i]==true){//统计回文串的个数
cnt++;
}
}
}
return cnt;
}
};
运行时间:20 ms
内存消耗:9.7 MB
解决方案二:中心扩展
由回文串的性质可知,回文串的字符是对称的(“ababa”“abbaabba”),由此可以遍历字符串的每个位置,分别在第i个位置从中间向两侧扩展,直到对应位置不相等为止。注意回文串长度可能为奇数或偶数,两种情况下的扩展方式不完全相同。奇数时扩展的初始位置在中间(对于ababa来说,从第三个位置开始),偶数时扩展的初始位置在最中间的两个字符(对于abbaabba来说,从第四个位置开始向左扩展,从第五个位置向右扩展)。
class Solution {
public:
int countSubstrings(string s) {
int len=s.length();
int ans=0;
for(int i=0;i<=len-1;i++){
int j=i,k=i;//寻找长度为奇数的回文串
while(j>=0&&k<=len-1&&s[j]==s[k]){//注意条件:1.不超出字符串的最大范围 2.对称位置字符相等
j--;//向左扩展
k++;//向右扩展
ans++;//符合回文串的特点
}
j=i;//寻找长度为偶数的回文串
k=i+1;
while(j>=0&&k<=len-1&&s[j]==s[k]){//同上
j--;
k++;
ans++;
}
}
return ans;
}
};
运行时间:8 ms
内存消耗:6.1 MB