最大值(单调队列)

时间限制: 1 Sec 内存限制: 128 MB
[提交] [状态]
题目描述
给出N个整数,和一个长度值Len,要求在这N个整数中每个长度为Len的连续一段数中的最大值。

例如:N=8,Len=3,8个整数是:2 5 1 1 2 4 7 1。答案是 5 5 2 4 7 7 。
解释:
2 5 1的最大值是5
5 1 1的最大值是5
1 1 2的最大值是2
1 2 4的最大值是4
2 4 7的最大值是7
4 7 1的最大值是7
输入
第一行2个正整数:N,Len。N范围[2…100000],Len范围[2…N]
第二行:N个正整数,每个数范围[1…1000000000]。
输出
一行,N-Len+1个整数。
样例输入 Copy

4 3
7 2 1 4

样例输出 Copy

7 4

题意很简单,就是求[i,i+len]内所有元素的最大值,其中i的范围为[1,n-len]。
暴力显然不行。我首先采用优先队列(priority queue)+队列(保存每个最大值)来做,结果发现会打乱序列原有的顺序,然后考虑dp,仍然没思路。最后百度了一下,可以用双端队列(deque)来做。
双端队列也是一种容器,它可以在队首进行插入(push_front())和删除(pop_front())操作,也可以在队尾进行插入(push_back())和删除(pop_back())操作,还可以访问队首的元素(front())。结合题意,我们可以维护一个递减队列,这样访问的队首元素恰好是区间内的最大值。
这个题的关键是如何插入和删除元素。
插入:为了保证单调队列的递减性,我们在插入元素xx(struct x类型)的时候,要将队尾的元素和xx的a成员(表示该元素的数据)比较,如果队尾的元素不大于a,则删除队尾的元素,然后继续将新的队尾的元素与a比较,直到队尾的元素大于a,这个时候我们才将xx插入到队尾。
删除:由于我们只需要保存len个元素中的最大值,所以当队首的元素的下标小于等于i-len的时候,就说明队首的元素对于求最大值已经没有意义了。(注意不是每经过一个循环后就删除队首元素,而是要根据队首元素的下标来确定,因为有时单调队列中的元素不一定是len个)所以当index<=i-len时,将队首元素删除。
模拟一下样例:

8 3
2 5 1 1 2 4 7 1
3个元素:2 5 1
i=12入队
i=22出队,5入队,队中元素为5
i=31入队,队中元素为5 1

i=41入队,队中元素为5 1 1
i=5,队首元素5的下标为2,不在范围内,5出队;2>11出队,1出队,2入队,队中元素为2
i=6,队首元素为22<42出队,4入队,队中元素为4
i=7,队首元素为44<74出队,7入队,队中元素为7
i=8,队首元素为77>11入队,队中元素为71
显然i>=3时每步的队首元素就是所求的最大值(5 5 2 4 7 7)

这个题与我之前写的单调栈的题解有相似的地方。

#include<cstdio>
#include<queue>
#include<deque>
using namespace std;
struct x
{
    int index;
    int a;
};
struct x xx[100005];
queue<int>ans;
deque<struct x>b;
int main()
{
    int n,len,i;
    scanf("%d %d",&n,&len);
    for(i=1;i<=n;i++)
    {
        scanf("%d",&xx[i].a);
        xx[i].index=i;
    }
    for(i=1;i<=len;i++)//前len个元素单独处理
    {
        while(!b.empty()&&b.back().a<=xx[i].a)b.pop_back();
        b.push_back(xx[i]);
    }
    ans.push(b.front().a);//队首元素放入队列,等待最后输出
    for(i=len+1;i<=n;i++)
    {
        while(!b.empty()&&b.front().index<=i-len)b.pop_front();
        while(!b.empty()&&b.back().a<=xx[i].a)b.pop_back();
        b.push_back(xx[i]);
        ans.push(b.front().a);//队首元素放入队列,等待最后输出
    }
    printf("%d",ans.front());//注意最后一个数字后面没有空格
    ans.pop();
    while(!ans.empty())
    {
        printf(" %d",ans.front());
        ans.pop();
    }
    return 0;
}
/**************************************************************
    Language: C++
    Result: 正确
    Time:37 ms
    Memory:2860 kb
****************************************************************/

这个题也可以用ST表来做。

#include<cstdio>
#include<queue>
#include<algorithm>
using namespace std;
int st_table[100005][20];
int a[100005];
int Log[100005];
queue<int>ans;
int main()
{
    int n,i,j,len;
    scanf("%d %d",&n,&len);
    for(i=1;i<=n;i++)scanf("%d",&a[i]);
    for(i=1;i<=n;i++)st_table[i][0]=a[i];
    Log[1]=0;
    for(i=2;i<=n;i++)Log[i]=Log[i/2]+1;
    for(j=1;(1<<j)<=n;j++)
    {
        for(i=1;i+(1<<j)-1<=n;i++)
        {
            st_table[i][j]=max(st_table[i][j-1],st_table[i+(1<<(j-1))][j-1]);//注意是i+(1<<(j-1)),不是i+(1<<j)
        }
    }
    for(i=1;i<=n-len+1;i++)
    {
        ans.push(max(st_table[i][Log[len]],st_table[i+len-(1<<Log[len])][Log[len]]));//区间长度别忘了+1
    }
    printf("%d",ans.front());
    ans.pop();
    while(!ans.empty())
    {
        printf(" %d",ans.front());
        ans.pop();
    }
    return 0;
}
/**************************************************************
    Language: C++
    Result: 正确
    Time:49 ms
    Memory:10664 kb
****************************************************************/
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值