本文旨在整理与 R S E I RSEI RSEI 指数相关的资料,并整合了一套适用于 Landsat 5/7/8/9 长时间序列计算的 R S E I RSEI RSEI 代码。在写课程论文时,网上搜集到大量相关资料,但对于一些细节和代码实现上的差异存在疑问,因此对常见问题进行了汇总和整理,部分代码需要统一命名或者优化用 AI 辅助,如有问题敬请批评指教!(后台留言即可)
内容介绍
徐涵秋老师提出遥感生态指数( R S E I RSEI RSEI), 能完全基于遥感信息集成多种指标,实现对区域生态环境的快速检测和评价。因其具有很强的客观性、稳定性和可视性,目前已在城市的生态环境质量评价中得到广泛应用。构建 R S E I RSEI RSEI 需要提取绿度、湿度、干度和热度四个生态因子,通过主成分变换合成四个指标,具体公式如下:[1]
- 绿度指标:植被覆盖状况是衡量一个地区生态质量的关键,归一化植被指数 NDVI \text{NDVI} NDVI 是应用最广泛的植被指数之一。 NDVI = ρ n i r − ρ r e d ρ n i r + ρ r e d \text{NDVI}=\frac{\rho_{\mathrm{nir}}-\rho_{\mathrm{red}}}{\rho_{\mathrm{nir}}+\rho_{\mathrm{red}}} NDVI=ρnir+ρredρnir−ρred
- 绿度指标可以替换为更适合山区的山地 NDVI \text{NDVI} NDVI或者 kNDVI \text{kNDVI} kNDVI。
- 湿度指标:缨帽变换(TCT)是将光谱数据压缩成与具有最小信息损失的几个波段的重要工具,经TCT变换后的前3个分量通常被定义为亮度、绿度、湿度,这些已广泛应用于生态环境检测之中。湿度指标采用缨帽变换的湿度分量,用以指示土壤和植被的水分信息。 WET = 0.1511 ρ b l u e + 0.1973 ρ g r e e n + 0.3283 ρ r e d + 0.3407 ρ n i r − 0.7117 ρ s w i r 1 − 0.4559 ρ s w i r 2 \text{WET}=0.1511\rho_{\mathrm{blue}}+0.1973\rho_{\mathrm{green}}+0.3283\rho_{\mathrm{red}}\\+0.3407\rho_{\mathrm{nir}}-0.7117\rho_{\mathrm{swir1}}-0.4559\rho_{\mathrm{swir2}} WET=0.1511ρblue+0.1973ρgreen+0.3283ρred+0.3407ρnir−0.7117ρswir1−0.4559ρswir2 由于 Landsat 5/7/8 的传感器参数不同,因此计算 WET 分量的参数不同,具体如表格所示:(Landsat 8 与 Landsat 9 由于十分相似,可以使用同一套缨帽变换的参数。[5])
Blue | Green | Red | NIR | SWIR1 | SWIR2 | 来源 | |
---|---|---|---|---|---|---|---|
Landsat 5 TM | 0.0315 | 0.2021 | 0.3102 | 0.1594 | -0.6806 | -0.6109 | [2] |
Landsat 7 ETM+ | 0.2626 | 0.2141 | 0.0926 | 0.0656 | -0.7629 | -0.5388 | [3] |
Landsat 8 OLS | 0.1511 | 0.1973 | 0.3283 | 0.3407 | -0.7117 | -0.4559 | [4] |
- 干度指标:建筑用地和裸露的土壤均会造成地表干化,地表干化一定程度上会造成区域生态环境污染。因此干度指标( NDSBI \text{NDSBI} NDSBI)同时考虑到建筑用地与裸土的影响,由规范到0~1之间的裸土指数( B I BI BI)与建筑指数( I B I IBI IBI)平均算出。 I S I = ( ρ S W I R 1 + ρ R e d ) − ( ρ N I R + ρ B l u e ) ( ρ S W I R 1 + ρ R e d ) + ( ρ N I R + ρ B l u e ) I_{ {\mathrm{SI}}}=\frac{(\rho_{ {\mathrm{SWIR}1}}+\rho_{ {\mathrm{Red}}})-(\rho_{ {\mathrm{NIR}}}+\rho_{ {\mathrm{Blue}}})}{(\rho_{ {\mathrm{SWIR}1}}+\rho_{ {\mathrm{Red}}})+(\rho_{ {\mathrm{NIR}}}+\rho_{ {\mathrm{Blue}}})} ISI=(ρSWIR1+ρRed)+(ρNIR+ρBlue)(ρSWIR1+ρRed)−(ρNIR+ρBlue) I I B I = { 2 ρ N I R / [ ( ρ S W I R 1 + ρ N I R ) − ρ N I R / ( ρ N I R + ρ R e d ) − ρ G r e e n / ( ρ G r e e n + ρ S W I R 1 ) ] } / { 2 ρ S W I R 1 / [ ( ρ S W I R 1 + ρ N I R ) + ρ N I R / ( ρ N I R + ρ R e d ) + ρ G r e e n / ( ρ G r e e n