AI 总结的的 AI 学习路线

一、入门阶段:数学基础与编程语言
数学基础

线性代数
当年白纸黑字推演, 都是泪啊,草稿本都用了一卷。
学习向量、矩阵的基本概念,包括向量的加法、减法、点积和叉积,矩阵的乘法、转置等运算。例如,在计算机图形学中,矩阵乘法用于实现图形的旋转、缩放和平移等变换。
理解特征值和特征向量的概念,它们在数据降维和主成分分析(PCA)等 AI 技术中有重要应用。

概率论与数理统计
研究生课程, 理解很好理解的, 就是算起来被虐了无数遍
掌握概率的基本概念,如事件的概率、条件概率、贝叶斯定理等。贝叶斯定理在机器学习的分类算法,如朴素贝叶斯分类器中是核心原理。
学习随机变量、概率分布(如正态分布、伯努利分布等),这些分布在生成模型和数据建模中经常出现。
了解均值、方差、协方差等统计量的计算和意义,它们用于描述数据的集中趋势和离散程度。

微积分
这算是本科高等数学了。虽然这门课是本科挂科第一名的,但理解透了, 举一反三很easy 的。

学习导数和微分的概念,导数可以用于求函数的斜率,在优化算法(如梯度下降)中用于计算损失函数的梯度。
理解积分的概念,它在计算概率密度函数下的面积等方面有应用。

编程语言
Python
python 算是最容易上手的语言了
学习 Python 的基本语法,包括变量、数据类型(整数、浮点数、字符串、列表、字典等)、控制流语句(if - else、for 循环、while 循环)。例如,通过循

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

微AI

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值