数学中的图像重构-- 雷达成像 Intro

这是我之前在剑桥大学上的一节研究生应数选修课 Image Reconstruction,之前没怎么听懂,所以这段时间想把它补起来。
这节课老师没有明确的讲义,所以我就照记着的一些书的顺序,把它复习了。
整堂课只有我一个人上 QAQ,所以应该算是在数学系里比较小众的方向吧。
因此这篇笔记 基本上是为了 我自己以后查资料或公式好找一点。
这篇笔记摘自 Fundamental of Radar Imaging. M.Cheney and B.Borden.

引言

雷达成像 Intro

初级图像方法

  • 雷达系统 由 转换电磁波 来完成 对 echo-locatio 回声位置与对反射场的测度。

回声位置

  • 理想系统
  • R R R 发射短脉冲与目标的距离
  • τ \tau τ 发射短脉冲到返回的时间
  • c c c 短脉冲的速度
  • 所以 c τ = 2 R c\tau = 2R cτ=2R 来回距离等于时间乘速度
  • R = c τ 2 R = \frac{c\tau}{2} R=2cτ

High-Range-resolution (HRR)高范围分辨率 Imaging

  • 对于一些比较复杂的目标 类似飞机,它有 superposition 叠加的反射响应,同时可以认为时一维的目标图像,把这一类响应称为 HRR 轮廓。

HRR

Real-Aperture 实孔径 Imaging

  • 用天线构成窄光速,并扫描区域成像。在每个光束位置与脉冲延迟,系统描绘出接收的强度。把这一类有 physical(real) 物理(真实) 孔径 所成的像称为实孔径成像。
  • 把覆盖地面的区域 称为 天线的 footprint覆盖区。

RA

Synthetic Aperture 合成孔径 Radar (SAR)

  • 更有效的成像方式。
  • 把 SAR 系统 platform 平台架设在飞行器上,在飞行过程中,转换信号波生成 scattered 疏散的波。然后运用数学的工具类似于 X-Ray Tomography X射线断层扫描 (CT) 生成高分辨率的图像。
    SAR系统
    Courtesy Sandia National Laboratories
    美国 华盛顿DC 的 SAR 图像 (Courtesy Sandia National Laboratories)

电磁波传播

The Equation of Electronmagnetic Wave Propagation

  • Maxwell’s equation 麦克斯韦 公式在时间域:
    ▽ × E = − ∂ B ∂ t ▽ × H = J + ∂ D ∂ t ▽ ⋅ D = ρ ▽ ⋅ B = 0 \begin{aligned} \triangledown \times \mathcal{E} &=-\frac{\partial \mathcal{B}}{\partial t} \\ \triangledown \times \mathcal{H} &= \mathcal{J} + \frac{\partial \mathcal{D}}{\partial t} \\ \triangledown \cdot \mathcal{D} &= \rho \\ \triangledown \cdot \mathcal{B} &= 0 \\ \end{aligned} ×E×HDB=tB=J+tD=ρ=0

  • E ( t , x ) \mathcal{E}(t,x) E(t,x) 为 electric field 电场

  • B ( t , x ) \mathcal{B}(t,x) B(t,x) 为 magnetic induction field 磁感应场

  • D ( t , x ) \mathcal{D}(t,x) D(t,x) 为 electric displacement field 电位移场

  • H ( t , x ) \mathcal{H}(t,x) H(t,x) 为 magnetic intensity field 强度磁场

  • J ( t , x ) \mathcal{J}(t,x) J(t,x) 为 current density 电流密度

  • ρ ( t , x ) \rho(t,x) ρ(t,x) 为 charge density 电荷密度

  • 电场方向为 电磁场的 polarization 极化

  • 在真空、干燥的空气 或 free space 自由空间中,则
    ρ ( t , x ) = 0  和  J ( t , x ) = 0 \rho(t,x) = 0 \text{ 和 } \mathcal{J}(t,x) = 0 ρ(t,x)=0  J(t,x)=0

    • 同时基本关系满足
      D = ϵ 0 E  和  B = μ 0 H D = \epsilon_0 \mathcal{E} \text{ 和 } \mathcal{B} = \mu_0 \mathcal{H} D=ϵ0E  B=μ0H
  • 推导 ▽ 2 E \triangledown^2 \mathcal{E} 2E:
    ▽ 2 E = ▽ ( ▽ ⋅ E ) − ▽ × ( ▽ × E ) = ▽ ( ▽ ⋅ D ϵ 0 ) − ▽ × ( − ∂ B ∂ t ) = ▽ ( ρ ϵ 0 ∣ ρ = 0 ) + ▽ × ( ∂ μ 0 H ∂ t ) = 0 + μ 0 ∂ 2 D ∂ t 2 ▽ 2 E = μ 0 ϵ 0 ∂ 2 E ∂ t 2 \begin{aligned} \triangledown^2 \mathcal{E} &= \triangledown(\triangledown\cdot \mathcal{E}) - \triangledown \times (\triangledown \times \mathcal{E}) \\ &= \triangledown(\frac{\triangledown \cdot \mathcal{D}}{\epsilon_0}) - \triangledown \times (-\frac{\partial \mathcal{B}}{\partial t}) \\ &= \triangledown(\frac{\rho}{\epsilon_0}\Big\vert_{\rho = 0})+ \triangledown \times (\frac{\partial \mu_0 \mathcal{H}}{\partial t}) \\ &= 0 + \mu_0 \frac{\partial^2 \mathcal{D}}{\partial t^2}\\ {\color{blue}\triangledown^2 \mathcal{E}} &{\color{blue} = \mu_0 \epsilon_0 \frac{\partial^2 \mathcal{E}}{\partial t^2}} \end{aligned} 2E2E=(E)×(×E)=(ϵ0D)×(tB)=(ϵ0ρρ=0)+×(tμ0H)=0+μ0t22D=μ0ϵ0t22E

  • 因此 在 Cartesian Coordinates 笛卡儿坐标里, 每个 E \mathcal{E} E 元素满足 scalar wave equation 标量波动方程。

  • 在自由空间中,常数波速 c = ( μ 0 ϵ 0 ) − 1 / 2 ≈ 3 ⋅ 1 0 8 m/sec c = (\mu_0 \epsilon_0)^{-1/2} \approx 3\cdot 10^8 \text{m/sec} c=(μ0ϵ0)1/23108m/sec

Plane Wave 平面波

  • Linearly Polarized Field 线式偏振场

E ( t , x ) = E e − i ω ( t − e ^ ⋅ x / c ) \mathcal{E}(t,x) = Ee^{-i\omega (t-\hat{e}\cdot x/c)} E(t,x)=Eeiω(te^x/c)

H ( t , x ) = H e − i ω ( t − e ^ ⋅ x / c ) \mathcal{H}(t,x) = He^{-i\omega (t-\hat{e}\cdot x/c)} H(t,x)=Heiω(te^x/c)

  • e ^ \hat{e} e^ unit vector 单位矢量
  • E , H , e ^ E, H, \hat{e} E,H,e^ mutually perpendicular 相互垂直
  • E ^ \hat{E} E^ 线式偏振场的极化

理想电导体边界条件

Boundary Conditions for a Perfect Electrical Conductor (PEC)

  • 理想导电体 允许电荷 在场内 自由的运动与立即响应,所以场在理想电导体内为零。
  • generalized Stokes’ Theorem 传统斯托克斯定理:
    • 在理想导电体外的电磁场必须满足:
      n ^ × E = 0     和     n ^ × H = J S \hat{n} \times \mathcal{E} = 0 \;\text{ 和 }\; \hat{n}\times \mathcal{H} = \mathcal{J}_S n^×E=0  n^×H=JS
      • J S \mathcal{J}_S JS 定义为 surface current 表面电流。
    • 电场的切向分量为零
    • 磁场的切向分量为理想导电体的表面电流。

角频率域的波动方程

The Wave Equation in the Angular Frequency Domain

  • 使用傅里叶变换
    E ( ω ) = ∫ e i ω t E ( t ) d t E(\omega) = \int e^{i\omega t}\mathcal{E}(t)dt E(ω)=eiωtE(t)dt
    c 2 = 1 μ 0 ϵ 0 ,    k = ω c ,    ω = 2 π v ,    λ = c v c^2 = \frac{1}{\mu_0 \epsilon_0},\; k = \frac{\omega}{c},\; \omega = 2\pi v, \;\lambda = \frac{c}{v} c2=μ0ϵ01,k=cω,ω=2πv,λ=vc

  • 上式波动方程

▽ 2 E + k 2 E = 0 {\color{blue}\triangledown^2 E + k^2 E = 0} 2E+k2E=0

雷达频带 图示

大气窗口

频带

频率与波长

雷达探测系统

Decibels 分贝

Bel = log ⁡ 10 ( power in power out ) \text{Bel} = \log_{10}(\frac{\text{power in}}{\text{power out}}) Bel=log10(power outpower in)

dB = 10 ⋅ log ⁡ 10 ( power in power out ) = 10 ⋅ log ⁡ 10 ( V in 2 V out 2 ) = 20 ⋅ log ⁡ 10 ( V in V out ) \begin{aligned}\text{dB} &= 10 \cdot \log_{10}(\frac{\text{power in}}{\text{power out}})\\& = 10 \cdot \log_{10}(\frac{V^2_\text{in}}{V^2_\text{out}}) \\&= 20 \cdot \log_{10}(\frac{V_\text{in}}{V_\text{out}}) \end{aligned} dB=10log10(power outpower in)=10log10(Vout2Vin2)=20log10(VoutVin)
分贝

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值