神经网络提高泛化能力是防止过拟合、增强模型适应新数据的关键目标。以下是结合数据、模型结构、训练策略的正交方法,综合多维度提升泛化能力的策略:
一、数据层面的优化策略
-
数据增强(Data Augmentation)
- 原理:通过几何变换(旋转、翻转、裁剪)、噪声添加、色彩调整等手段扩展数据集多样性,模拟真实场景的数据变化,迫使模型学习更鲁棒的特征。
- 应用:图像任务中,随机裁剪保留主体特征;文本任务中,同义词替换或随机遮盖(如BERT的Masked Language Model)。
-
数据预处理与特征工程
- 标准化:归一化输入数据(如Z-Score标准化),避免特征尺度差异影响梯度更新。
- 特征筛选:通过PCA、互信息分析等剔除冗余特征,提升数据质量。
-
调整数据分布
- 类别平衡:对长尾数据采用过采样(SMOTE)或欠采样,缓解模型对多数类的过拟合倾向。
- 动态采样:根据训练阶段调整样本权重,如Focal Loss赋予难样本更高权重。