sklearn中GBDT的一些参数、属性、方法的理解

该博客详细介绍了GBDT分类器的重要参数,包括loss、learning_rate、subsample等,并提供了调参建议。同时提到了GBDT回归器的区别在于loss和criterion。通过理解这些参数,有助于优化模型性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


本文主要是sklearn中GBDT的一些参数、属性、方法的理解,如果需要了解基础的理论知识,可以看看之前发表的文章: 梯度提升树(GBDT)相关知识

GBDT 分类器

引入

from sklearn.ensemble import GradientBoostingClassifier
# 全部参数
GradientBoostingClassifier(ccp_alpha=0.0, criterion='friedman_mse', init=None,
                           learning_rate=0.1, loss='deviance', max_depth=3,
                           max_features=None, max_leaf_nodes=None,
                           min_impurity_decrease=0.0, min_impurity_split=None,
                           min_samples_leaf=1, min_samples_split=2,
                           min_weight_fraction_leaf=0.0, n_estimators=100,
                           n_iter_no_change
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值