人才管理:人才九宫格,提低扩中保高

        人才管理必须基于既定的组织战略,首席人才集合人力资源团队的核心人员,在调查研究内外部环境和资源的基础上,做出适宜组织发展的人才战略。

        在既定人才战略的指导下,对核心人才和关键专业技术人才进行全面系统规划,明确人才的选拔、培养、考核、激励等一系列的人才管理工作。

       所有人才管理工作,是以人才盘点为基础的。人才盘点中重要的一个模型工具就是人才九宫格。

图片

什么是人才九宫格?

        在人才盘点时,根据人才的绩效和能力(包括潜力),分别作为纵坐标和横坐标,将人才盘点的结果划分为9个象限,人才分为九个类别,以便于分类管理,因材施教。

       根据人才九宫格,我们将人才划分为9大类别。

图片

人才的九大类别。

1.问题员工。

问题员工在团队占比约5%,未达标因其绩效和能力的不足,急需要提升能力和提高绩效。

处理策略:分析原因,给予1~3个月考察期,根据考察结果给予培训;转岗或辞退。

2.差距员工。

差距员工在团队中占比约15%,能力一般、绩效存在差距。可能存在环境和文化不适应的问题。

处理策略:分析原因后,给予针对性的培训,重点是提高绩效。

3.一般员工。

一般员工在团队中占比约15%,绩效达标,能力尚待提高。

处理策略:给予针对性的培训,提高能力。

4.待展现者。

待展现员工在团队中占比约为10%左右,能力突出,但业绩不达标。

处理策略:企业以核心人员培养,通过针对性的培训,提升为重点核心人才。

5.中坚力量。

中坚力量员工在团队中占比约20%,能力一般,业绩达标。

处理策略:保持不变。通过培训或业绩辅导使其提升为绩效之星、骨干员工。

6.熟练员工。

熟练员工在团队中占比约为10%,业绩突出,但是能力尚待提高。

处理策略:给予专业培训和辅导,重点提升能力。

7.绩效之星。

绩效之星员工在团队中占比约为10%,能力一般,但是绩效突出。

处理策略:扩充职责,提升能力。

8.潜力之星。

“潜力之星”员工在团队中占比约10%,能力突出,但是业绩一般。。

处理策略:指派更多挑战性任务提升工作的多样性和丰富化,激发工作动机。

9.超级明星。

超级之星在团队中占比约为5%,能力突出,业绩也突出。

处理策略:给予更高难度的挑战,促进快速提升。给予晋升加薪。

图片

         人才管理,基于组织的人力规划和盘点,将现有人才分门别类放入以上9个象限,将人才分为9个类别。根据各类别的特点,不同问题不同,给予针对性的处理策略。

        人才的分类并非一劳永逸,也并不是一成不变的。由于组织内外部环境持续的在发生变化,导致组织的战略文化也会发生相应的调整。

         我们应当以辩证和发展的眼光来看待人才的发展。组织内部实施相应的人才策略,包括培训,绩效考核等,同时会给人才带来一些变化,在不同的宫格之间进行调整和变动。

图片

人才分类激励策略。

       每年度的人才盘点工作结束之后,将现有人才划分到人才的九宫格中,并且分别实施不同的培养方案和激励策略。 

       郭老师的基本观点:抓两头带中间,提低扩中保高。优奖高升,低培转辞。

(1)明星员工:一年内给予晋升加薪。

(2)核心骨干:1~2年给予晋升,通过轮岗培训,扩大职责等给予更多锻炼机会。

(3)中坚力量:保持不变,给予专项培训和针对性辅导,尽快提升为明星员工和骨干。

(4)待提升者:培训,必要时给予转告。

(5)问题员工:暂不给予晋升,通过针对性沟通,限期提升,否则转岗、淘汰。

 

https://mp.weixin.qq.com/s/6-KguaBbekwAT3HO2EzTmw

【源码免费下载链接】:https://renmaiwang.cn/s/2gdnj 《R语言数据挖掘方法及应用》由薛薇编写而成的一本系统阐述R语言在数据挖掘领域前沿技术的著作。该书旨在指导读者学会使用R语言进行效、实用的数据分析与建模工作,涵盖了从理论基础到实践操作的全过程。作为一款功能强大且开源的统计计算和图形处理平台,R语言凭借其丰富的工具库和社区支持,在数据分析与可视化方面展现出显著优势。在数据挖掘领域,R语言供了包括`caret`、`randomForest`、`tm`、`e1071`等广泛使用的专用包,这些工具能够帮助用户更便捷地进行数据预处理、特征选择、模型构建和结果评估。全书首先介绍R语言的基本知识体系,涵盖环境配置与安装方法、基础语法规范以及常见数据类型分析等内容。这些基础知识是开展后续数据分析工作的必备技能,通过学习可以快速掌握R语言的核心功能。随后章节深入讲解了数据挖掘的主要概念与流程,包括数据清洗、转换整理和探索性分析等环节,同时详细阐述了分类、聚类、关联规则挖掘及预测等多种典型任务的具体实施方法。这些内容有助于读者全面理解数据挖掘的整体架构及其核心工作步骤。在应用实践部分,薛薇老师结合真实案例展示了R语言在实际业务场景中的具体运用,例如市场细分分析、客户流失预测以及个性化推荐系统等。通过这些案例研究,读者可以深入学习如何利用相关工具包解决实际问题,并升数据分析能力。此外,书中配套的“案例数据集”和“代码资源”为读者供了实践操作的机会,使理论知识能够更好地转化为动手技能。通过实际操作分析,读者可以加深对R语言数据挖掘方法的理解并灵活运用。总之,《R语言数据挖掘方法及应用》是一部全面讲解R语言在数据分析与建模领域的教材,无论你是刚开始学习的新人还是经验丰富的专业人士,都能从中获益匪浅。通过深入研读此书,你可以掌握R语言的数据挖掘技巧,并将其应用到实
内容概要:本文出了一种基于改进粒子滤波算法的无人机三维航迹预测方法,并通过Matlab代码实现仿真验证。该方法针对传统粒子滤波在无人机轨迹预测中存在的粒子退化和计算复杂度等问题,引入优化策略升滤波精度与效率,有效了对无人机运动轨迹的非线性、非斯环境下的预测能力。文中详细阐述了算法原理、模型构建流程及关键步骤,包括状态转移建模、观测方程设计、重采样优化等,并结合三维空间中的实际飞行轨迹进行仿真实验,验证了所方法相较于标准粒子滤波在位置预测误差和收敛速度方面的优越性。; 适合人群:具备一定信号处理、导航估计算法基础,熟悉Matlab编程,从事无人系统、智能交通、航空航天等相关领域研究的研究生或科研人员; 使用场景及目标:①应用于无人机实时轨迹预测与状态估计系统中,升飞行安全性与自主性;②为复杂环境下非线性动态系统的建模与滤波算法研究供技术参考;③【预测】改进粒子滤波的无人机三维航迹预测方法(Matlab代码实现)支持后续展至多无人机协同跟踪与避障系统的设计与仿真; 阅读建议:建议结合Matlab代码逐模块分析算法实现细节,重点关注粒子滤波的改进机制与三维可视化结果对比,同时可尝试替换不同运动模型或噪声条件以深入理解算法鲁棒性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值