ConcurrentHashMap是Java并发包中提供的一个线程安全且高效的HashMap实现(若对HashMap的实现原理还不甚了解,可参考我的另一篇文章HashMap实现原理及源码分析),ConcurrentHashMap在并发编程的场景中使用频率非常之高,本文就来分析下ConcurrentHashMap的实现原理,并对其实现原理进行分析(JDK1.7).
ConcurrentHashMap实现原理
众所周知,哈希表是中非常高效,复杂度为O(1)的数据结构,在Java开发中,我们最常见到最频繁使用的就是HashMap和HashTable,但是在线程竞争激烈的并发场景中使用都不够合理。
HashMap :先说HashMap,HashMap是线程不安全的,在并发环境下,可能会形成环状链表(扩容时可能造成,具体原因自行百度google或查看源码分析),导致get操作时,cpu空转,所以,在并发环境中使用HashMap是非常危险的。
HashTable : HashTable和HashMap的实现原理几乎一样,差别无非是1.HashTable不允许key和value为null;2.HashTable是线程安全的。但是HashTable线程安全的策略实现代价却太大了,简单粗暴,get/put所有相关操作都是synchronized的,这相当于给整个哈希表加了一把大锁,多线程访问时候,只要有一个线程访问或操作该对象,那其他线程只能阻塞,相当于将所有的操作串行化,在竞争激烈的并发场景中性能就会非常差。
HashTable性能差主要是由于所有操作需要竞争同一把锁,而如果容器中有多把锁,每一把锁锁一段数据,这样在多线程访问时不同段的数据时,就不会存在锁竞争了,这样便可以有效地提高并发效率。这就是ConcurrentHashMap所采用的"分段锁"思想。
ConcurrentHashMap源码分析
ConcurrentHashMap采用了非常精妙的"分段锁"策略,ConcurrentHashMap的主干是个Segment数组。
final Segment<K,V>[] segments;
Segment继承了ReentrantLock,所以它就是一种可重入锁(ReentrantLock)。在ConcurrentHashMap,一个Segment就是一个子哈希表,Segment里维护了一个HashEntry数组,并发环境下,对于不同Segment的数据进行操作是不用考虑锁竞争的。(就按默认的ConcurrentLeve为16来讲,理论上就允许16个线程并发执行,有木有很酷)
所以,对于同一个Segment的操作才需考虑线程同步,不同的Segment则无需考虑。
Segment类似于HashMap,一个Segment维护着一个HashEntry数组
transient volatile HashEntry<K,V>[] table;
HashEntry是目前我们提到的最小的逻辑处理单元了。一个ConcurrentHashMap维护一个Segment数组,一个Segment维护一个HashEntry数组。
static final class HashEntry<K,V> {
final int hash;
final K key;
volatile V value;
volatile HashEntry<K,V> next;
//其他省略
}
我们说Segment类似哈希表,那么一些属性就跟我们之前提到的HashMap差不离,比如负载因子loadFactor,比如阈值threshold等等,看下Segment的构造方法
Segment(float lf, int threshold, HashEntry<K,V>[] tab) {
this.loadFactor = lf;//负载因子
this.threshold = threshold;//阈值
this.table = tab;//主干数组即HashEntry数组
}
我们来看下ConcurrentHashMap的构造方法
1 public ConcurrentHashMap(int initialCapacity,
2 float loadFactor, int concurrencyLevel) {
3 if (!(loadFactor > 0) || initialCapacity < 0 || concurrencyLevel <= 0)
4 throw new IllegalArgumentException();
5 //MAX_SEGMENTS 为1<<16=65536,也就是最大并发数为65536
6 if (concurrencyLevel > MAX_SEGMENTS)
7 concurrencyLevel = MAX_SEGMENTS;
8 //2的sshif次方等于ssize,例:ssize=16,sshift=4;ssize=32,sshif=5
9 int sshift = 0;
10 //ssize 为segments数组长度,根据concurrentLevel计算得出
11 int ssize = 1;
12 while (ssize < concurrencyLevel) {
13 ++sshift;
14 ssize <<= 1;
15 }
16 //segmentShift和segmentMask这两个变量在定位segment时会用到,后面会详细讲
17 this.segmentShift = 32 - sshift;
18 this.segmentMask = ssize - 1;
19 if (initialCapacity > MAXIMUM_CAPACITY)
20 initialCapacity = MAXIMUM_CAPACITY;
21 //计算cap的大小,即Segment中HashEntry的数组长度,cap也一定为2的n次方.
22 int c = initialCapacity / ssize;
23 if (c * ssize < initialCapacity)
24 ++c;
25 int cap = MIN_SEGMENT_TABLE_CAPACITY;
26 while (cap < c)
27 cap <<= 1;
28 //创建segments数组并初始化第一个Segment,其余的Segment延迟初始化
29 Segment<K,V> s0 =
30 new Segment<K,V>(loadFactor, (int)(cap * loadFactor),
31 (HashEntry<K,V>[])new HashEntry[cap]);
32 Segment<K,V>[] ss = (Segment<K,V>[])new Segment[ssize];
33 UNSAFE.putOrderedObject(ss, SBASE, s0);
34 this.segments = ss;
35 }
初始化方法有三个参数,如果用户不指定则会使用默认值,initialCapacity为16,loadFactor为0.75(负载因子,扩容时需要参考),concurrentLevel为16。
从上面的代码可以看出来,Segment数组的大小ssize是由concurrentLevel来决定的,但是却不一定等于concurrentLevel,ssize一定是大于或等于concurrentLevel的最小的2的次幂。比如:默认情况下concurrentLevel是16,则ssize为16;若concurrentLevel为14,ssize为16;若concurrentLevel为17,则ssize为32。为什么Segment的数组大小一定是2的次幂?其实主要是便于通过按位与的散列算法来定位Segment的index。至于更详细的原因,有兴趣的话可以参考我的另一篇文章《HashMap实现原理及源码分析》,其中对于数组长度为什么一定要是2的次幂有较为详细的分析。
接下来,我们来看看put方法
public V put(K key, V value) {
Segment<K,V> s;
//concurrentHashMap不允许key/value为空
if (value == null)
throw new NullPointerException();
//hash函数对key的hashCode重新散列,避免差劲的不合理的hashcode,保证散列均匀
int hash = hash(key);
//返回的hash值无符号右移segmentShift位与段掩码进行位运算,定位segment
int j = (hash >>> segmentShift) & segmentMask;
if ((s = (Segment<K,V>)UNSAFE.getObject // nonvolatile; recheck
(segments, (j << SSHIFT) + SBASE)) == null) // in ensureSegment
s = ensureSegment(j);
return s.put(key, hash, value, false);
}
从源码看出,put的主要逻辑也就两步:1.定位segment并确保定位的Segment已初始化 2.调用Segment的put方法。
关于segmentShift和segmentMask
segmentShift和segmentMask这两个全局变量的主要作用是用来定位Segment,int j =(hash >>> segmentShift) & segmentMask。
segmentMask:段掩码,假如segments数组长度为16,则段掩码为16-1=15;segments长度为32,段掩码为32-1=31。这样得到的所有bit位都为1,可以更好地保证散列的均匀性
segmentShift:2的sshift次方等于ssize,segmentShift=32-sshift。若segments长度为16,segmentShift=32-4=28;若segments长度为32,segmentShift=32-5=27。而计算得出的hash值最大为32位,无符号右移segmentShift,则意味着只保留高几位(其余位是没用的),然后与段掩码segmentMask位运算来定位Segment。
get/put方法
get方法
public V get(Object key) {
Segment<K,V> s;
HashEntry<K,V>[] tab;
int h = hash(key);
long u = (((h >>> segmentShift) & segmentMask) << SSHIFT) + SBASE;
//先定位Segment,再定位HashEntry
if ((s = (Segment<K,V>)UNSAFE.getObjectVolatile(segments, u)) != null &&
(tab = s.table) != null) {
for (HashEntry<K,V> e = (HashEntry<K,V>) UNSAFE.getObjectVolatile
(tab, ((long)(((tab.length - 1) & h)) << TSHIFT) + TBASE);
e != null; e = e.next) {
K k;
if ((k = e.key) == key || (e.hash == h && key.equals(k)))
return e.value;
}
}
return null;
}
get方法无需加锁,由于其中涉及到的共享变量都使用volatile修饰,volatile可以保证内存可见性,所以不会读取到过期数据。
来看下concurrentHashMap代理到Segment上的put方法,Segment中的put方法是要加锁的。只不过是锁粒度细了而已。
final V put(K key, int hash, V value, boolean onlyIfAbsent) {
HashEntry<K,V> node = tryLock() ? null :
scanAndLockForPut(key, hash, value);//tryLock不成功时会遍历定位到的HashEnry位置的链表(遍历主要是为了使CPU缓存链表),若找不到,则创建HashEntry。tryLock一定次数后(MAX_SCAN_RETRIES变量决定),则lock。若遍历过程中,由于其他线程的操作导致链表头结点变化,则需要重新遍历。
V oldValue;
try {
HashEntry<K,V>[] tab = table;
int index = (tab.length - 1) & hash;//定位HashEntry,可以看到,这个hash值在定位Segment时和在Segment中定位HashEntry都会用到,只不过定位Segment时只用到高几位。
HashEntry<K,V> first = entryAt(tab, index);
for (HashEntry<K,V> e = first;;) {
if (e != null) {
K k;
if ((k = e.key) == key ||
(e.hash == hash && key.equals(k))) {
oldValue = e.value;
if (!onlyIfAbsent) {
e.value = value;
++modCount;
}
break;
}
e = e.next;
}
else {
if (node != null)
node.setNext(first);
else
node = new HashEntry<K,V>(hash, key, value, first);
int c = count + 1;
//若c超出阈值threshold,需要扩容并rehash。扩容后的容量是当前容量的2倍。这样可以最大程度避免之前散列好的entry重新散列,具体在另一篇文章中有详细分析,不赘述。扩容并rehash的这个过程是比较消耗资源的。
if (c > threshold && tab.length < MAXIMUM_CAPACITY)
rehash(node);
else
setEntryAt(tab, index, node);
++modCount;
count = c;
oldValue = null;
break;
}
}
} finally {
unlock();
}
return oldValue;
}
总结
ConcurrentHashMap作为一种线程安全且高效的哈希表的解决方案,尤其其中的"分段锁"的方案,相比HashTable的全表锁在性能上的提升非常之大。本文对ConcurrentHashMap的实现原理进行了详细分析,并解读了部分源码,希望能帮助到有需要的童鞋。
https://www.cnblogs.com/chengxiao/p/6842045.html