OpenCV7.形态学操作

膨胀

图像A和结构元素B,结构元素B在A上面移动,其中B定义其中心为锚点,计算B覆盖下A的最大像素值用来替换锚点的像素

腐蚀

与膨胀操作类似以最小值替换锚点重叠下图像的像素值

相关API

dilate(src, dst, kernel)

erode(src, dst, kernel)

获取结构元素

getStructuringElement(int shape, Size ksize, Point anchor)

shape包括(MORPH_RECT矩形\MORPH_CROSS十字形\MORPH_ELLIPSE椭圆)

ksize值必须大于0且为奇数

anchor锚点默认是Point(-1, -1)意思为中心像素

动态调整结构元素大小

TrackBar-createTrackbar(const String & trackbarname, const String winname, int* value, int count, Trackbarcallback func, void* userdata = 0);

代码展示

#include <iostream>
#include "opencv2/opencv.hpp"

using namespace std;
using namespace cv;

int current_size = 3;
int max_size = 8;
Mat src, dst;

void callback(int, void*);

int main()
{
	src = imread("F:/Opencvlearn/picture/word.jpg");
	if (src.empty())
	{
		cout << "could not load image..." << endl;
		return -1;
	}
	namedWindow("input", WINDOW_AUTOSIZE);
	imshow("input", src);

	namedWindow("output", WINDOW_AUTOSIZE);
	createTrackbar("element size:", "output", &current_size, max_size, callback);
	callback(0, 0);
	waitKey(0);
	return 0;
}

void callback(int, void*)
{
	int s = current_size * 2 + 1;
	Mat structElement = getStructuringElement(MORPH_RECT, Size(s, s), Point(-1, -1));
	//erode(src, dst, structElement);
	dilate(src, dst, structElement);
	imshow("output", dst);
	return;
}

开操作

先腐蚀后膨胀

可以去掉小的对象

闭操作

线膨胀后腐蚀

可以填充小的洞

形态学梯度

膨胀减去腐蚀,又称为基本梯度

顶帽

原图像与开操作的差值图像

黑帽

闭操作图像与原图像的差值图像

相关API

morphologyEx(src, dst, int op, kernel);

op包括MORPH_OPEN、MORPH_CLOSE、MORPH_GRADIENT、MORPH_TOPHAT、MORPH_BLACKHAT

kernel结构元素 getStructuringElement(int shape, Size ksize, Point anchor)

代码展示

#include <iostream>
#include "opencv2/opencv.hpp"

using namespace std;
using namespace cv;

int main()
{
	Mat src, dst;
	src = imread("F:/Opencvlearn/picture/word.jpg");
	if (src.empty())
	{
		cout << "could not load image..." << endl;
		return -1;
	}
	namedWindow("input", WINDOW_AUTOSIZE);
	imshow("input", src);
	
	Mat kernel = getStructuringElement(MORPH_RECT, Size(11, 11), Point(-1, -1));
	//morphologyEx(src, dst, MORPH_OPEN, kernel);
	//morphologyEx(src, dst, MORPH_CLOSE, kernel);
	//morphologyEx(src, dst, MORPH_GRADIENT, kernel);
	//morphologyEx(src, dst, MORPH_TOPHAT, kernel);
	morphologyEx(src, dst ,MORPH_BLACKHAT, kernel);
	namedWindow("output", WINDOW_AUTOSIZE);
	imshow("output", dst);
	waitKey(0);
	return 0;
}

形态学操作应用-提取水平与垂直线

原理

通过使用两个最基本的形态学操作——膨胀与腐蚀,使用不同的结构元素实现对输入图像的操作

步骤

输入图像彩色图像

转换为灰度图像cvtColor

转换为二值图像adaptiveThreshold

定义结构元素getStructuringElement

开操作(先腐蚀后膨胀)提取水平或者垂直线

相关API

adaptiveThreshold(src, dst,

double maxValue, //二值图像的最大值

int adaptiveMethod, //自适应方法,目前只有两种ADAPTIVE_THRESH_MEAN_C和ADAPTIVE_THRESH_GAUSSIAN_C

int thresholdType, //阈值类型,选THRESH_BINARY

int block size, //块大小

double C

)

代码展示

#include <iostream>
#include "opencv2/opencv.hpp"

using namespace std;
using namespace cv;

int main()
{
	Mat src, dst;
	src = imread("F:/Opencvlearn/picture/line.png");
	if (src.empty())
	{
		cout << "could not load image..." << endl;
		return -1;
	}
	namedWindow("input", WINDOW_AUTOSIZE);
	imshow("input", src);
	
	cvtColor(src, dst, COLOR_BGR2GRAY);
	imshow("gray", dst);

	Mat bin;
	adaptiveThreshold(~dst, bin, 255, ADAPTIVE_THRESH_MEAN_C, THRESH_BINARY, 25, -9);//~代表取反
	imshow("binary", bin);

	Mat line;
	//水平结构元素
	Mat hline = getStructuringElement(MORPH_RECT, Size(bin.cols / 16, 1), Point(-1, -1)); //一个像素宽的水平线
	//垂直结构元素
	Mat vline = getStructuringElement(MORPH_RECT, Size(1, bin.rows / 16), Point(-1, -1)); //一个像素宽的垂直线
	//矩形结构元素
	Mat rect = getStructuringElement(MORPH_RECT, Size(3, 3), Point(-1, -1));

	morphologyEx(bin, line, MORPH_OPEN, rect); //开操作
	bitwise_not(line, line); //取反
	namedWindow("output", WINDOW_AUTOSIZE);
	imshow("output", line);
	waitKey(0);
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值