win10+CUDA安装及环境配置

CUDNN是用来实现高性能GUP加速的,快3到5倍的时间
首先通过NVIDIA控制面板查看电脑适用的CUDA版本
桌面鼠标右键即可:
在这里插入图片描述
在这里插入图片描述

CUDA和CUDNN的版本要对应,即:CUDA 9.1,CUDNN也下载9.1
安装CUDA
在这里插入图片描述

下载其他版本,请选择右下角Legacy Releases
下载CUDNN (最好用10.2以下)
在这里插入图片描述
点击下载,没有注册的话,这里需要注册一下。
下载之后双击CUDA安装包进行安装即可。
此目录是临时解压目录,安装完成后会自动删除,最终cuda还是会默认安装在C盘。所以安装在C盘即可
在这里插入图片描述
建议选择自定义
在这里插入图片描述
VS Intergration选择可能会安装失败,可以后续单独安装
在这里插入图片描述
单击下一步安装即可
安装完成后,管理员窗口cmd输入 nvcc --version 查看CUDA版本

CUDNN配置
cudnn是一个压缩文件不需要安装,只需要解压在自定义盘中即可
解压后打开CUDNN文件夹
进入cuda\bin找到cudnn64_7复制粘贴到 CUDA\bin
进入include找到cudnn.h 复制粘贴到 CUDA\include
lib\×64找到cudnn.lib 复制粘贴到 CUDA\lib\×64
CUDA的安装目录在 C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v9.1

配置环境变量
CUDA9.1版本安装之后会自动配置好环境变量,不需手动添加
其他版本环境变量如有遗漏可按照此图进行添加
注意版本号要按照自己下载的版本写
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v9.1\bin
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v9.1\libnvvp
完成!

最后再管理员窗口cmd输入 nvidia-smi 可查看当前GPU的使用情况
如出现不是内部命令则需要在系统变量path中新建环境变量,我的地址如下:
在这里插入图片描述
在这里插入图片描述
出现此页面即表示CUDA安装成功!!!

### 回答1: OpenCV是一个开源的计算机视觉和机器学习库,可以方便地处理图像和视频。而CUDA(Compute Unified Device Architecture)是由NVIDIA开发的一种并行计算架构,可以速图形处理器(GPU)上的计算任务。 OpenCV 4.5.1是OpenCV的一个版本,它提供了丰富的功能和算法,用于图像和视频处理、特征提取、目标检测等任务。这个版本可以在Windows 10操作系统上使用,并且可以与Visual Studio 2017集成,提供开发环境和调试工具。 CUDA 10.0是NVIDIA的一个版本,它支持NVIDIA GPU上的并行计算任务。它允许开发人员使用C语言、C++或CUDA自己的扩展语言编写并行计算代码,以速计算密集型任务。例如,在图像处理中,可以使用CUDA速OpenCV算法,从而提高计算性能。 而cuDNN(CUDA Deep Neural Network library)是NVIDIA专门为深度学习任务开发的一个库。它提供了一组高性能的深度神经网络的基本操作和优化算法,可以与CUDA和OpenCV结合使用。 综上所述,OpenCV 4.5.1可以与CUDA 10.0和cuDNN 7.6.0集成使用。开发者可以在Visual Studio 2017中使用这些工具和库进行图像处理和机器学习任务的开发和优化。通过使用CUDA速,可以提高计算性能,而cuDNN可以提供深度学习任务所需的算法和操作。 ### 回答2: OpenCV 4.5.1是一个计算机视觉库,用于在计算机视觉和机器学习项目中进行图像和视频处理。VS2017是一个集成开发环境(IDE),用于Windows操作系统上的软件开发。CUDA(Compute Unified Device Architecture)是一个用于GPU计算的并行计算平台和API模型。CUDNN是NVIDIA深度神经网络库,用于在GPU上速深度学习任务。 在Windows 10上使用VS2017来编译OpenCV 4.5.1,并在CUDA 10.0和CUDNN 7.6.0的支持下进行构建可以提供更好的计算性能和速。CUDA 10.0提供了与CUDA架构和驱动程序的兼容性,并支持许多NVIDIA GPU。CUDNN 7.6.0是基于CUDA的深度神经网络库,可以速深度学习任务的训练和推理。 使用VS2017编译OpenCV可以让开发者方便地在Windows平台上进行开发和调试。VS2017提供了强大的集成开发环境,它可以帮助开发者编写、调试和测试程序。通过配置CUDA 10.0和CUDNN 7.6.0来支持OpenCV的GPU速,可以进一步提高图像和视频处理的速度和效率。 总结来说,使用OpenCV 4.5.1、VS2017、Windows 10、CUDA 10.0和CUDNN 7.6.0可以实现在Windows平台上的高效计算机视觉和机器学习开发。这种配置可以提供更好的性能和速,特别是在需要处理大量图像和视频、进行深度学习任务的情况下。
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值