数理逻辑2 -- 量化理论4

继续一阶逻辑的性质。

(h) 如果一个好式子 B 含有自由变量xi1,xi2,...,xik,并且序列 s s在第 i1,i2,...,ik 这些位置上的值相同。那么, s 满足B,当且仅当, s 满足 B
注:这个性质看上去像废话,自由变量取值相同,当然得出结果就相同。但要严格证明,还是得下一番功夫。
证明:证明的技巧是基于连接符号与全称量词个数的归纳法。先证明一个引理。
引理2.13:如果一个项t中的变量是 xi1,xi2,...,xik ,并且序列 s s i1,i2,...,ik 这些位置上有相同值。那么, s(t)=(s)(t)
引理2.13的证明:由于 t 只包含三类符号,变量、常量、函数符号。所以在t的映射过程中,常量总是映射到固定的值。由于 t 只包含变量xi1,xi2,...,xik,在用序列 s 作映射的时候,xi1,xi2,...,xik对应的值分别是 si1,si2,...,sik ,而 s 映射时对应的值分别是 si1,si2,...,sik 。由于 s s在这些位置上的值相同,所以 t 在二者映射出来的值也相同。
引理2.13证毕

接着引进一个定义:对于一个序列s和一个好式子 B ,由于B包含若干项,我们称这些项通过序列 s 映射到定义域的过程为B基于 s 的取值

继续(h)的证明,我们采用基于连接符号与全称量词总个数的归纳法。
h.1 当B是原子wf时,根据引理2.13, B 基于s s 的取值总是相同。所以,如果 s 满足B,则 s 满足 B ,反之亦然。因此 s 满足B,当且仅当, s 满足 B

h.2 假设B包含的连接符号和全称量词总个数为 n1 时,性质成立。我们考虑 n 的情况:
h.2.1 B ¬D 的形式。根据归纳假设, s 满足D,当且仅当, s 满足 D 。所以,若s满足 B ,则s不满足 D ,进而s不满足 D ,所以s满足 B 。若s满足 B ,同理可得s满足 B 。所以,s满足 B ,当且仅当,s满足 B
h.2.2 B CD 的形式。如果 s 满足B,若 s 不满足C,则 s 也不满足 C (归纳假设),所以s满足 B 。若s满足 D ,则s也满足 D ,所以s满足 B 。反之,若s满足 B ,同理可得s满足 B 。所以,s满足 B ,当且仅当,s满足 B
h.2.3 B (xj)D 的形式。此时 D 中的自由变量顶多就是xi1,xi2,...,xik xj (无论 xj 是否在 xi1,xi2,...,xik 中)。如果 s 满足B,那么任一与 s 最多在j位置取值不同的序列都满足 D 。对于任一与s最多在 j 位置取值不同的序列r,都存在一个序列 r ,使得r s 最多只在j位置取值不同,同时 r r i1,i2,...,ik j 位置取值相同。这里的关键就是要证明r满足 D 。因为D中的连接符号与全称量词个数都小于 n ,所以根据归纳假设,r满足 D ,当且仅当,r满足 D (因为D顶多含有 xi1,xi2,...,xik xj 这些自由变量)。因此, s 满足 B 。反之,如果s满足 B ,同理可得s满足 B
证毕

(i) 如果B是一个闭合的好式子,即 B 中不包含自由变量,那么对于任一解释M,要么 MB ,或者 M¬B
证明:利用上述(h)的性质,如果一个好式子 B 如果包含k个自由变量 xi1,xi2,...,xik ,那么序列 s s至少在 i1,i2,...,ik k 个位置取值相同,则s满足 B ,当且仅当,s满足 B 。特别的,k=0时,性质也成立,也即 B 不包含自由变量时,任意s s 都满足性质(h)。所以,对于任一解释 M ,如果某个序列s满足 B ,那么根据(h),所有序列都会满足B。如果某个序列 s 不满足B,则 s 满足¬B,那么所有序列都会满足 ¬B
证毕

(j) 假设项 t B(xi)中对 xi 自由,则 (xi)B(xi)B(t) 对任一解释都为真。
注: B(xi) 是指 xi B 中是自由变量。B(t)是指用项 t 替代B xi 所有的自由出现。
证明:我们只需证明对任一序列(任一解释) s ,如果s满足 (xi)B(xi) ,那么 s 也满足B(t)
我们需要两个引理:
引理2.14: t u是两个项, s 是一个序列。项t由如下方式产生:把 t 中所有出现的xi都替换成 u 。序列s由如下方式产生: s i位置的值换成 s(u) 。那么, s(t)=(s)(t)
引理2.14证明: 我们先定义任一项 t 的长度:t的长度是 t 中常量符号、变量符号与函数符号的个数之和。所以,如果t是常量或者变量,则 t 的长度为1。如果t f(x) ,它包含一个函数符号和一个变量符号,则它的长度为2。如果 t f1(1,x1,f2(x2,x3,x4)),则 t 的长度为7。
(2.14.1)当t的长度为 1 时,不难证明性质成立。
(2.14.2)当t的长度为 2 时,它一定是由一个函数符号f和一个常量或变量符号 t 组成,基于(2.14.1),也不难证明性质成立。
(2.14.3)假设t的长度为 n1 时性质成立,那么当 t 的长度为n>2时,它一定是诸如 fk(t1,t2,...,tk) 的形式,而且 ti,i=1,2,...,k 这些项的长度都小于 n 。根据归纳假设,性质对ti成立,所以不难证明,性质对 t 也成立。
引理2.14证毕

引理2.15:如果t B(xi) 中对 xi 自由,那么给定一个序列 s=(s1,s2,...) ,序列 s 由以下方式产生:把序列 s i位置的取值替换成 s(t) 。那么, s 满足B(t),当且仅当, s 满足 B(xi)
引理2.15证明:同样,我们用基于连接符号和全称量词个数的归纳法。
(2.15.1) 当 B 是原子wf,即D(u1,u2,...,uk)的形式,其中 ui,i=1,2,...,k 是项。那么,记项 t 取代变量xi后的项 ui ui 。根据上述引理2.14,可得 s(ui)=(s)(ui) 。所以, D(t) 基于 s 的取值与D(xi)基于 s 的取值相同。因此, s 满足D(t),当且仅当, s 满足 D(xi)
(2.15.2) 当 B ¬D的形式,根据归纳假设,性质对 D 成立,不难证明性质也对B成立。
(2.15.3) 当 B CD,不难证明性质成立。
(2.15.4) 当 B (xj)D(xi)的形式,
(2.15.4.1) 若 xj 就是 xi ,那么 xi B 中就不是自由变量,所以此时用t取代 xi 的所有自由出现即是什么都不做, B(t) 也仅是 B(xi) 。由于 s s仅在 i 位置取值不同,所以根据性质(h),只要xi不是自由变量,无论 B 包含多少自由变量,都有s满足 B ,当且仅当,s满足 B
(2.15.4.2) 若xj不是 xi 。因为 t xi自由,因此 t 中肯定不包含变量xj。现在,如果 s 满足B(t),记任一与 s 最多在j位置不同的序列集合为 S 。那么,若rS,则 r 满足D(t)。接着,我们记与 s 最多只在 j 位置取值不同的序列集合为S。对于 rS ,我们总能在 S 中找到一个序列r,使得 r r j 位置取值相同。由于rS,所以 r s只在 j 位置取值不同。接下来我们要证明r满足 D(xi) ,为此,由于 r 满足D(t),要想借用归纳假设,只需证明 r i 位置的取值是r(t)即可。现在 r i 位置的取值是s(t),注意到 t 中不包含变量xj,而 r s仅在 j 位置取值不同,所以很容易得到$$r^{}(t) = $s^{}(t)r’ D(x_i) s’ B(x_i)$。

反之,如果 s 满足 B(xi) ,采用同样的方法定义集合 S 和集合 S 。对于任一rS,总能找到一个 rS ,使得 r r j 位置取值相同。同样的,我们只需证明r满足 B(t) 。要想用归纳假设,只需证明 r i 位置的取值是r(t),这和上面的证明过程是一样的。
引理2.15证毕

我们继续性质(j)的证明。如果序列 s 满足(xi)B(xi),我们要证明 s 满足B(t)
(j.1) xi B 中没有自由出现。此时B(t)就是 B(xi) s 当然满足B(t)
(j.2) xi B 中有自由出现,那么我们如下产生序列s:把 s i位置的值替换成 s(t) 。因为 s s 仅在i位置取值不同,所以 s 满足 B(xi) 。根据引理2.15, s 也满足B(t)
证毕

性质(h)很重要,更深刻地理解为什么要定义自由变量,为什么替换变量的过程中只能替换自由出现。在性质(h)中,为什么 t 一定要对xi自由呢?如果一个项 t xi不自由,性质(h)也成立吗?当然不成立,性质(h)的证明过程中引理2.15的证明利用了 t xi自由的条件。如果 t xi不自由,我们很容易构造一个反例。

考虑 B A1(x1)(x2)A2(x1,x2),其中一个解释的定义域为自然数, A1 的解释是 {1} A2 的解释是 (1,1),(1,2),... ,即第二个元素是任一自然数。现在,考虑项 t x2。那么, t x1是不自由的,因为 A2 中自由出现的 x1 x2 限制了。用 t 取代B就得到 A1(x2)(x2)A2(x2,x2) ,记为 B(t) 。现在,考虑序列 s=(1,2,...) 。显然,它满足 (x1)B ,但它不满足 B(t)

继续讨论一阶逻辑满足性的最后一个性质。
(k) 如果 xi B 中没有自由出现,则(xi)(BD)(B(xi)D)对任一解释为真。
证明:只需证明对任一序列 s (任一解释),如果s满足 (xi)(BD) ,则 s 也满足(B(xi)D)。更进一步,我们只需证明如果 s 满足(xi)(BD) B ,则s也满足 (xi)D

因为 s 满足(xi)(BD),所以任一与 s 最多在i位置取值不同的序列 r 满足(BD)。若要证明 s 满足(xi)D,只需证明 r 满足D即可,也即证明 r 满足B即可。

而且 xi B 中没有自由出现,根据性质(h),由于s r 只在i位置取值不同,所以不管 B 有没有包含其它自由变量,我们都可以得出, s满足 B ,当且仅当,r满足 B 。既然s满足 B ,所以r也满足 B <script type="math/tex" id="MathJax-Element-369184">B</script>。
证毕

这11个性质(a)-(k)是为了搞清楚好式子的满足性,使之能和命题演算系统的真假性做些关联。弄清楚这些性质之后,就可以建立类似系统L的一阶逻辑公理系统了。

添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值