处理时间序列数据时,经常需要对数据进行预处理,然后在使用复杂模型处理数据。其中,常用的一种方法就是对数据取log,进行log变形。那么什么样的时间序列数据需要进行取log呢?查阅资料发现,如果数据满足如下两点,就比较适合take log。
- 每个时刻的数据都为正数(为0时,可以通过+1来变为正数)
- 数据的变化量随着时间的增加,指数级增加
以一个具体的例子来看:
原始数据:
take log后的数据:
take log之后,可以更清晰的排除增加量带来的影响,更清晰地看出数据变化的规律。