机器学习笔记 (二)Logistic回归

本文详细介绍了Logistic回归,从Logit函数和Sigmoid函数开始,探讨了模型形式、损失函数的极大似然估计及其求导过程,最后讲解了使用梯度下降法进行参数估计的步骤。通过对损失函数的分析,解释了为何不采用MSE作为损失函数的原因。
摘要由CSDN通过智能技术生成

一、Logit函数和Sigmoid函数

二、模型形式

h θ ( x ) = 1 1 + e − θ T x h_\theta(x)=\frac{1}{1+e^{-\theta^Tx}} hθ(x)=1+eθTx1

其中 θ = ( θ 0 , θ 1 , θ 2 , . . . , θ n ) T \theta=(\theta_0,\theta_1,\theta_2,...,\theta_n)^T θ=(θ0,θ1,θ2,...,θn)T x = ( 1 , x ( 1 ) , x ( 2 ) , . . . , x ( n ) ) T x=(1,x^{(1)},x^{(2)},...,x^{(n)})^T x=(1,x(1),x(2),...,x(n))T

三、损失函数

Logistic回归模型的损失函数在数学上可以通过极大似然估计得出

1.极大似然估计(MLE)

似然(likelihood)函数与概率(probability)函数是函数 P ( x ∣ θ ) P(x|\theta) P(xθ)的两种方向的解释。当参数 θ \theta θ确定,自变量 x x x未知时, P ( x ∣ θ ) P(x|\theta) P(xθ)表示的是不同的样本点 x x x出现的概率;当自变量 x x x确定,参数 θ \theta θ未知时, P ( x ∣ θ ) P(x|\theta) P(xθ)表示对于不同的模型参数 θ \theta θ,样本点 x x x出现的概率。

极大似然估计的基本原理就是当某个事件发生时,选取让这个事件发生的概率达到最大化的参数作为模型的参数。

当事件域中有多个事件时,把每个事件发生的概率 P ( x i ∣ θ ) P(x_i|\theta) P(xiθ)相乘得到似然函数 L ( x ∣ θ ) = ∏ i = 1 n P ( x i ∣ θ ) L(x|\theta)=\prod_{i=1}^nP(x_i|\theta) L(xθ)=i=1nP(xiθ)

2.损失函数

Logistic回归模型中

h θ ( x ) = P ( y = 1 ∣ x , θ ) = 1 1 + e − θ T x h_\theta(x)=P(y=1|x,\theta)=\frac{1}{1+e^{-\theta^T x}} hθ(x)=P(y=1x,θ)=1+eθTx1

1 − h θ ( x ) = P ( y = 0 ∣ x , θ ) = e − θ T x 1 + e − θ T x 1-h_\theta(x)=P(y=0|x,\theta)=\frac{e^{-\theta^T x}}{1+e^{-\theta^T x}} 1hθ(x)=P(y=0x,θ)=1+eθTxeθTx

因此Logistic回归模型的似然函数为

L ( x ∣ θ ) = ∏ h θ ( x ) y i ( 1 − h θ ( x )

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值