Project——唇部试妆

该博客探讨了唇部区域检测技术,包括基于YIQ和RGB颜色空间的嘴唇检测方法,以及基于人脸几何特征的检测策略。还介绍了嘴唇涂色的实现,特别是在YUV颜色空间中的应用,为移动端AR试妆提供了理论基础。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

唇部区域检测


基于不同颜色空间唇部颜色统计的方法:

关于颜色空间的介绍请参考博文:http://blog.csdn.net/victoriaw/article/details/67639227

基于YIQ颜色空间的嘴唇检测:

-参考博文http://blog.csdn.net/Trent1985/article/details/46330847
通过对嘴唇样本的分析,发现唇部颜色在YIO颜色空间中的分布范围如下:

分量范围
Y[80, 220]
I[12, 78]
Q[7, 25]
基于RGB颜色空间的嘴唇检测:
  • 唇色判断公式:

    logG(B0.391R0.609)<T

    满足上述公式的像素就是唇色像素。T可以取-0.15。

  • 图片来自论文:《唇部特征跟踪系统》
    这里写图片描述
    可以看出唇色中红色和绿色之间的差异比肤色中红色和绿色的差异要大。


基于人脸几何特征的方法

参考论文:《Low Resource Lip Finding and Tracking Algorithm for Embedded Devices》
这篇论文介绍的方法包含3步:

  • 滤波和阈值
  • 分割:把属于相同水平contour的点聚成blob,每个blob由其中心点坐标以及面积来表示。把面积过大或者过小的blob过滤掉
  • 搜索和匹配:利用眉毛和嘴唇之间的位置关系(两个眉毛中心和嘴巴距离最小)进行搜索最可能的三个blob作为嘴、两个眉毛。

嘴唇涂色:

嘴唇涂色可以在YUV颜色空间中进行。假设嘴唇上某一像素P(x,y),涂色值为Color(R, G, B),先计算P的Y值,然后计算Color的UV值,组合在一起得到YUV值,将这个YUV值映射到RGB颜色空间中,即可上色。

参考

[1] 基于OpenCV实现的Android移动端口红AR

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值